Combining multiple structure and sequence alignments to improve sequence detection and alignment: Application to the SH2 domains of Janus kinases

被引:44
作者
Al-Lazikani, B [1 ]
Sheinerman, FB [1 ]
Honig, B [1 ]
机构
[1] Columbia Univ, Howard Hughes Med Inst, Dept Biochem & Mol Biophys, New York, NY 10032 USA
关键词
D O I
10.1073/pnas.011577898
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, an approach is described that combines multiple structure alignments and multiple sequence alignments to generate sequence profiles for protein families. First, multiple sequence alignments are generated from sequences that are closely related to each sequence of known three-dimensional structure. These alignments then are merged through a multiple structure alignment of family members of known structure. The merged alignment is used to generate a Hidden Markov Model for the family in question. The Hidden Markov Model can be used to search for new family members or to improve alignments for distantly related family members that already have been identified. Application of a profile generated for SH2 domains indicates that the Janus family of nonreceptor protein tyrosine kinases contains SH2 domains. This conclusion is strongly supported by the results of secondary structure-prediction programs, threading calculations, and the analysis of comparative models generated for these domains. One of the Janus kinases, human TYK2, has an SH2 domain that contains a histidine instead of the conserved arginine at the key phosphotyrosine-binding position, beta B5. Calculations of the pK(a) values of the beta B5 arginines in a number of SH2 domains and of the beta B5 histidine in a homology model of TYK2 suggest that this histidine is likely to be neutral around pH 7, thus indicating that it may have lost the ability to bind phosphotyrosine. If this indeed is the case, TYK2 may contain a domain with an SH2 fold that has a modified binding specificity.
引用
收藏
页码:14796 / 14801
页数:6
相关论文
共 50 条
[1]   Do aligned sequences share the same fold? [J].
Abagyan, RA ;
Batalov, S .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 273 (01) :355-368
[2]   Incorporating protein conformational flexibility into the calculation of pH-dependent protein properties [J].
Alexov, EG ;
Gunner, MR .
BIOPHYSICAL JOURNAL, 1997, 72 (05) :2075-2093
[3]   Jak2 acts as both a STAT1 kinase and as a molecular bridge linking STAT1 to the angiotensin II AT1 receptor [J].
Ali, MS ;
Sayeski, PP ;
Bernstein, KE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (20) :15586-15593
[4]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[5]   The determinants of pK(a)s in proteins [J].
Antosiewicz, J ;
McCammon, JA ;
Gilson, MK .
BIOCHEMISTRY, 1996, 35 (24) :7819-7833
[6]   The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1999 [J].
Bairoch, A ;
Apweiler, R .
NUCLEIC ACIDS RESEARCH, 1999, 27 (01) :49-54
[7]   PKAS OF IONIZABLE GROUPS IN PROTEINS - ATOMIC DETAIL FROM A CONTINUUM ELECTROSTATIC MODEL [J].
BASHFORD, D ;
KARPLUS, M .
BIOCHEMISTRY, 1990, 29 (44) :10219-10225
[8]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkh121, 10.1093/nar/gkr1065]
[9]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) :535-542
[10]  
Bork P, 1996, METHOD ENZYMOL, V266, P162