Crystal structure of the macrocycle-forming thioesterase domain of the erythromycin polyketide synthase: Versatility from a unique substrate channel

被引:182
作者
Tsai, SC
Miercke, LJW
Krucinski, J
Gokhale, R
Chen, JCH
Foster, PG
Cane, DE
Khosla, C [1 ]
Stroud, RM
机构
[1] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
[2] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Biochem, Stanford, CA 94305 USA
[5] Brown Univ, Dept Chem, Providence, RI 02912 USA
关键词
D O I
10.1073/pnas.011399198
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
As the first structural elucidation of a modular polyketide synthase (PKS) domain, the crystal structure of the macrocycle-forming thioesterase (TE) domain from the 6-deoxyerythronolide B synthase (DEBS) was solved by a combination of multiple isomorphous replacement and multiwavelength anomalous dispersion and refined to an R factor of 24.1% to 2.8-Angstrom resolution. Its overall tertiary architecture belongs to the alpha/beta -hydrolase family, with two unusual features unprecedented in this family: a hydrophobic leucine-rich dinner interface and a substrate channel that passes through the entire protein. The active site triad, comprised of Asp-169, His-259, and Ser-142, is located in the middle of the substrate channel, suggesting the passage of the substrate through the protein. Modeling indicates that the active site can accommodate and orient the 6-deoxyerythronolide B precursor uniquely, while at the same time shielding the active site from external water and catalyzing cyclization by macrolactone formation. The geometry and organization of functional groups explain the observed substrate specificity of this TE and offer strategies for engineering macrocycle biosynthesis. Docking of a homology model of the upstream acyl carrier protein (ACP6) against the TE suggests that the 2-fold axis of the TE dimer may also be the axis of symmetry that determines the arrangement of domains in the entire DEBS. Sequence conservation suggests that all TEs from modular polyketide synthases have a similar fold, dimer 2-fold axis, and substrate channel geometry.
引用
收藏
页码:14808 / 14813
页数:6
相关论文
共 28 条
[1]  
AGGARWAL R, 1995, J CHEM SOC CHEM COMM, V15, P1519
[2]   The crystal structure of palmitoyl protein thioesterase 1 and the molecular basis of infantile neuronal ceroid lipofuscinosis [J].
Bellizzi, JJ ;
Widom, J ;
Kemp, C ;
Lu, JY ;
Das, AK ;
Hofmann, SL ;
Clardy, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (09) :4573-4578
[3]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[4]   Biochemistry - Harnessing the biosynthetic code: Combinations, permutations, and mutations [J].
Cane, DE ;
Walsh, CT ;
Khosla, C .
SCIENCE, 1998, 282 (5386) :63-68
[5]   MULTIPLE SEQUENCE ALIGNMENT WITH HIERARCHICAL-CLUSTERING [J].
CORPET, F .
NUCLEIC ACIDS RESEARCH, 1988, 16 (22) :10881-10890
[6]   REPOSITIONING OF A DOMAIN IN A MODULAR POLYKETIDE SYNTHASE TO PROMOTE SPECIFIC CHAIN CLEAVAGE [J].
CORTES, J ;
WIESMANN, KEH ;
ROBERTS, GA ;
BROWN, MJB ;
STAUNTON, J ;
LEADLAY, PF .
SCIENCE, 1995, 268 (5216) :1487-1489
[7]   Solution structure of the actinorhodin polyketide synthase acyl carrier protein from Streptomyces coelicolor A3(2) [J].
Crump, MP ;
Crosby, J ;
Dempsey, CE ;
Parkinson, JA ;
Murray, M ;
Hopwood, DA ;
Simpson, TJ .
BIOCHEMISTRY, 1997, 36 (20) :6000-6008
[8]   Crystal structure of the human acyl protein thioesterase I from a single X-ray data set to 1.5 Å [J].
Devedjiev, Y ;
Dauter, Z ;
Kuznetsov, SR ;
Jones, TLZ ;
Derewenda, ZS .
STRUCTURE, 2000, 8 (11) :1137-1146
[9]   MODULAR ORGANIZATION OF GENES REQUIRED FOR COMPLEX POLYKETIDE BIOSYNTHESIS [J].
DONADIO, S ;
STAVER, MJ ;
MCALPINE, JB ;
SWANSON, SJ ;
KATZ, L .
SCIENCE, 1991, 252 (5006) :675-679
[10]   Mechanism and specificity of the terminal thioesterase domain from the erythromycin polyketide synthase [J].
Gokhale, RS ;
Hunziker, D ;
Cane, DE ;
Khosla, C .
CHEMISTRY & BIOLOGY, 1999, 6 (02) :117-125