Molecular mechanisms and regulation of plant ion channels

被引:63
作者
Czempinski, K [1 ]
Gaedeke, N [1 ]
Zimmermann, S [1 ]
Müller-Röber, B [1 ]
机构
[1] Max Planck Inst Mol Pflanzenphysiol, D-14476 Golm, Germany
关键词
Arabidopsis; channel mutants; Xenopus oocytes; insect cells; KCO family;
D O I
10.1093/jexbot/50.suppl_1.955
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plant ion channel activities are rapidly modulated in response to several environmental and endogenous stimuli. Electrophysiological as well as pharmacological studies provide strong evidence that ion channels are essential for the induction of specific cellular responses and that they are themselves subject to regulation by a variety of cellular factors. Genes anal cDNAs of several plant ion channels have been identified in recent years giving access to molecular mechanisms of such regulatory processes. Cloned inwardly rectifying potassium channels have been investigated in various heterologous expression systems. Two other ion channel classes, namely members of the 'two-pore' K+ channel family as well as of the anion-conducting chloride channel (CIC) family, have been cloned, but a direct link to corresponding plasma membrane or endomembrane ion channel conductances has not been demonstrated yet. Analysis of cellular expression patterns of plant ion channel genes in combination with transgenic approaches now gives access to a detailed ex planta/in planta correlation of channel function, as has recently been demonstrated for proteins of the K-in(+) channel family. This review summarizes current knowledge on molecular structures and some features of structure-function relationships of plant ion channels.
引用
收藏
页码:955 / 966
页数:12
相关论文
共 95 条
[1]   14-3-3 PROTEINS ON THE MAP [J].
AITKEN, A .
TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (03) :95-97
[2]   POTASSIUM CHANNELS - NEW CHANNEL SUBUNITS ARE A TURN-OFF [J].
ALDRICH, RW .
CURRENT BIOLOGY, 1994, 4 (09) :839-840
[3]   FUNCTIONAL EXPRESSION OF A PROBABLE ARABIDOPSIS-THALIANA POTASSIUM CHANNEL IN SACCHAROMYCES-CEREVISIAE [J].
ANDERSON, JA ;
HUPRIKAR, SS ;
KOCHIAN, LV ;
LUCAS, WJ ;
GABER, RF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (09) :3736-3740
[4]   SENSITIVITY TO ABSCISIC-ACID OF GUARD-CELL K+ CHANNELS IS SUPPRESSED BY ABI1-1, A MUTANT ARABIDOPSIS GENE ENCODING A PUTATIVE PROTEIN PHOSPHATASE [J].
ARMSTRONG, F ;
LEUNG, J ;
GRABOV, A ;
BREARLEY, J ;
GIRAUDAT, J ;
BLATT, MR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (21) :9520-9524
[5]   CYCLIC-AMP AS A 2ND MESSENGER IN HIGHER-PLANTS - STATUS AND FUTURE-PROSPECTS [J].
ASSMANN, SM .
PLANT PHYSIOLOGY, 1995, 108 (03) :885-889
[6]   Transport proteins of the plant plasma membrane [J].
Assmann, SM ;
Haubrick, LL .
CURRENT OPINION IN CELL BIOLOGY, 1996, 8 (04) :458-467
[7]   Organization and expression of the gene coding for the potassium transport system AKT1 of Arabidopsis thaliana [J].
Basset, M ;
Conejero, G ;
Lepetit, M ;
Fourcroy, P ;
Sentenac, H .
PLANT MOLECULAR BIOLOGY, 1995, 29 (05) :947-958
[8]   Changes in voltage activation, Cs+ sensitivity, and ion permeability in H5 mutants of the plant K+ channel KAT1 [J].
Becker, D ;
Dreyer, I ;
Hoth, S ;
Reid, JD ;
Busch, H ;
Lehnen, M ;
Palme, K ;
Hedrich, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (15) :8123-8128
[9]   Functional expression and characterization of a plant K+ channel gene in a plant cell model [J].
Bei, QX ;
Luan, S .
PLANT JOURNAL, 1998, 13 (06) :857-865
[10]  
BENNETT V, 1992, J BIOL CHEM, V267, P8703