Dynamic evolution of venom proteins in squamate reptiles

被引:82
作者
Casewell, Nicholas R. [1 ,2 ]
Huttley, Gavin A. [3 ]
Wuester, Wolfgang [1 ]
机构
[1] Bangor Univ, Sch Biol Sci, Environm Ctr Wales, Bangor LL57 2UW, Gwynedd, Wales
[2] Univ Liverpool, Liverpool Sch Trop Med, Alistair Reid Venom Res Unit, Liverpool L3 5QA, Merseyside, England
[3] Australian Natl Univ, Dept Genome Biol, John Curtin Sch Med Res, Canberra, ACT 0200, Australia
来源
NATURE COMMUNICATIONS | 2012年 / 3卷
基金
英国自然环境研究理事会; 澳大利亚研究理事会;
关键词
PHYLOGENETIC ANALYSIS; ACCELERATED EVOLUTION; ADAPTIVE EVOLUTION; NATURAL-SELECTION; SNAKE; ORIGIN; NEOFUNCTIONALIZATION; PITVIPERS; VIPERIDAE; PROGRAM;
D O I
10.1038/ncomms2065
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Phylogenetic analyses of toxin gene families have revolutionised our understanding of the origin and evolution of reptile venoms, leading to the current hypothesis that venom evolved once in squamate reptiles. However, because of a lack of homologous squamate non-toxin sequences, these conclusions rely on the implicit assumption that recruitments of protein families into venom are both rare and irreversible. Here we use sequences of homologous non-toxin proteins from two snake species to test these assumptions. Phylogenetic and ancestral-state analyses revealed frequent nesting of 'physiological' proteins within venom toxin clades, suggesting early ancestral recruitment into venom followed by reverse recruitment of toxins back to physiological roles. These results provide evidence that protein recruitment into venoms from physiological functions is not a one-way process, but dynamic, with reversal of function and/or co-expression of toxins in different tissues. This requires a major reassessment of our previous understanding of how animal venoms evolve.
引用
收藏
页数:10
相关论文
共 52 条
[1]   The quest for natural selection in the age of comparative genomics [J].
Anisimova, M. ;
Liberles, D. A. .
HEREDITY, 2007, 99 (06) :567-579
[2]   SIMMAP: Stochastic character mapping of discrete traits on phylogenies [J].
Bollback, JP .
BMC BIOINFORMATICS, 2006, 7 (1)
[3]   Gene Trees Reveal Repeated Instances of Mitochondrial DNA Introgression in Orangethroat Darters (Percidae: Etheostoma) [J].
Bossu, Christen M. ;
Near, Thomas J. .
SYSTEMATIC BIOLOGY, 2009, 58 (01) :114-129
[4]   Partitioned Bayesian analyses, partition choice, and the phylogenetic relationships of scincid lizards [J].
Brandley, MC ;
Schmitz, A ;
Reeder, TW .
SYSTEMATIC BIOLOGY, 2005, 54 (03) :373-390
[5]  
Casewell N. R., 2011, MOL BIOL EVOL, V28, P91
[6]   Domain Loss Facilitates Accelerated Evolution and Neofunctionalization of Duplicate Snake Venom Metalloproteinase Toxin Genes [J].
Casewell, Nicholas R. ;
Wagstaff, Simon C. ;
Harrison, Robert A. ;
Renjifo, Camila ;
Wuester, Wolfgang .
MOLECULAR BIOLOGY AND EVOLUTION, 2011, 28 (09) :2637-2649
[7]   Bayesian mixed models and the phylogeny of pitvipers (Viperidae: Serpentes) [J].
Castoe, TA ;
Parkinson, CL .
MOLECULAR PHYLOGENETICS AND EVOLUTION, 2006, 39 (01) :91-110
[8]   Modeling nucleotide evolution at the mesoscale:: The phylogeny of the Neotropical pitvipers of the Porthidium group (Viperidae: Crotalinae) [J].
Castoe, TA ;
Sasa, MM ;
Parkinson, CL .
MOLECULAR PHYLOGENETICS AND EVOLUTION, 2005, 37 (03) :881-898
[9]   A multi-organ transcriptome resource for the Burmese Python (Python molurus bivittatus) [J].
Castoe T.A. ;
Fox S.E. ;
Jason De Koning A. ;
Poole A.W. ;
Daza J.M. ;
Smith E.N. ;
Mockler T.C. ;
Secor S.M. ;
Pollock D.D. .
BMC Research Notes, 4 (1)
[10]   Insights into the Influence of Priors in Posterior Mapping of Discrete Morphological Characters: A Case Study in Annonaceae [J].
Couvreur, Thomas L. P. ;
Gort, Gerrit ;
Richardson, James E. ;
Sosef, Marc S. M. ;
Chatrou, Lars W. .
PLOS ONE, 2010, 5 (05)