Toda fields of SO(3) hyper-Kahler metrics and free field realizations

被引:28
作者
Bakas, I
Sfetsos, K
机构
[1] ENSLAPP,PHYS THEOR LAB,F-74941 ANNECY LE VIEUX,FRANCE
[2] UNIV UTRECHT,INST THEORET PHYS,NL-3508 TA UTRECHT,NETHERLANDS
[3] UNIV PATRAS,DEPT PHYS,GR-26110 PATRAS,GREECE
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 1997年 / 12卷 / 14期
关键词
D O I
10.1142/S0217751X97001456
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The Eguchi-Hanson, Taub-NUT and Atiyah-Hitchin metrics are the only complete nonsingular SO(3)-invariant hyper-Kahler metrics in four dimensions. The presence of a rotational SO(2) isometry allows their unified treatment based on solutions of the 3D continual Toda equation. We determine the Toda potential in each case and examine the free held realization of the corresponding solutions, using infinite power series expansions. The Atiyah-Hitchin metric exhibits some unusual features attributed to topological properties of the group of area preserving diffeomorphisms. The construction of a descending series of SO(a)-invariant 4D regular hyper-Kahler metrics remains an interesting question.
引用
收藏
页码:2585 / 2611
页数:27
相关论文
共 46 条
[1]  
ADAMS M, 1985, INFINITE DIMENSIONAL
[2]   GEOMETRICAL STRUCTURE AND ULTRAVIOLET FINITENESS IN THE SUPERSYMMETRIC SIGMA-MODEL [J].
ALVAREZGAUME, L ;
FREEDMAN, DZ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 80 (03) :443-451
[3]  
Atiyah M., 1988, GEOMETRY DYNAMICS MA
[4]   LOW-ENERGY SCATTERING OF NON-ABELIAN MONOPOLES [J].
ATIYAH, MF ;
HITCHIN, NJ .
PHYSICS LETTERS A, 1985, 107 (01) :21-25
[5]   T-DUALITY AND WORLD-SHEET SUPERSYMMETRY [J].
BAKAS, I ;
SFETSOS, K .
PHYSICS LETTERS B, 1995, 349 (04) :448-457
[6]   THE STRUCTURE OF THE W-INFINITY ALGEBRA [J].
BAKAS, I .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 134 (03) :487-508
[7]  
BAKAS I, 1990, SUPERMEMBRANES PHYSI
[8]   ASYMPTOTICALLY EUCLIDEAN BIANCHI-9 METRICS IN QUANTUM GRAVITY [J].
BELINSKII, VA ;
GIBBONS, GW ;
PAGE, DN ;
POPE, CN .
PHYSICS LETTERS B, 1978, 76 (04) :433-435
[9]   KILLING VECTORS IN SELF-DUAL, EUCLIDEAN EINSTEIN-SPACES [J].
BOYER, CP ;
FINLEY, JD .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (06) :1126-1130
[10]  
Byrd P. F., 1954, Handbook of Elliptic Integrals for Engineers and Physicists