On the shape of the symmetric, persymmetric, and skew-symmetric solution set

被引:14
作者
Alefeld, G
Kreinovich, V
Mayer, G
机构
[1] UNIV TEXAS,DEPT COMP SCI,EL PASO,TX 79968
[2] UNIV ROSTOCK,FACHBEREICH MATH,D-18051 ROSTOCK,GERMANY
关键词
linear systems with perturbed input data; solution set of linear systems of equations; symmetric matrices; persymmetric matrices; skew-symmetric matrices; Oettli-Prager theorem; Fourier-Motzkin elimination; interval analysis;
D O I
10.1137/S0895479896297069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a characterization of the solution set S, the symmetric solution set S-sym, the persymmetric solution set S-per, and the skew-symmetric solution set S-skew of real linear systems Ax = b with the n x n coefficient matrix A varying between a lower bound A and an upper bound (A) over bar, and with b similarly varying between b, (b) over bar. We show that in each orthant the sets S-sym, S-per, and S-skew are, respectively, the intersection of S with sets, the boundaries of which are quadrics.
引用
收藏
页码:693 / 705
页数:13
相关论文
共 14 条
[1]  
Alefeld G., 1983, INTRO INTERVAL COMPU
[2]  
ALFELD G, 1995, SIAM J MATRIX ANAL A, V16, P1223
[3]  
ALFELD G, 1996, NUMERICAL METHODS ER, P16
[4]  
ALFELD G, 1995, APPL INTERVAL COMPUT, P61
[5]  
[Anonymous], TOPICS VALIDATED NUM
[6]  
Beeck H., 1972, Computing, V10, P231, DOI 10.1007/BF02316910
[7]  
Golub GH, 2013, Matrix Computations, V4
[8]  
HARTFIEL DJ, 1980, NUMER MATH, V35, P355, DOI 10.1007/BF01396417
[9]   INTERVAL LINEAR-SYSTEMS WITH SYMMETRICAL MATRICES, SKEW-SYMMETRICAL MATRICES AND DEPENDENCIES IN THE RIGHT HAND SIDE [J].
JANSSON, C .
COMPUTING, 1991, 46 (03) :265-274
[10]  
Jansson C., 1991, COMPUTER ARITHMETIC, P293