Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time

被引:158
作者
Lagercrantz, U
Putterill, J
Coupland, G
Lydiate, D
机构
[1] JOHN INNES CTR, DEPT MOLEC GENET, NORWICH NR4 7UH, NORFOLK, ENGLAND
[2] JOHN INNES CTR, BRASSICA & OILSEEDS RES DEPT, NORWICH NR4 7UH, NORFOLK, ENGLAND
关键词
D O I
10.1046/j.1365-313X.1996.09010013.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The model dicotyledonous plant, Arabidopsis thaliana, is closely related to Brassica crop species. It is intended that information concerning the genetic control of basic biological processes in Arabidopsis will be transferable to other species. Genome collinearity and its potential to facilitate the identification of candidate genes in Arabidopsis homologous to genes controlling important agronomic traits in Brassica was investigated. Genetic mapping in B. nigra identified two loci influencing flowering time (FT), with loci on linkage groups 2 and 8 explaining 53% and 12% of the total variation in FT, respectively. The CO gene exerts an important control over FT in A. thaliana, and B, nigra homologues of CO probably also play an important role in regulating FT. B. nigra homologues of CO were identified on linkage groups 2 and 8, the homologue on group 2 was coincident with the major locus controlling FT while the homologue on group 8 was within the 90% confidence interval of the weaker FT gene. The CO homologue on group 2 exhibits abundant allelic variation suggesting that it naturally controls a wide range of flowering times. Fine-scale A. thaliana/B. nigra comparative mapping demonstrated short-range collinearity between the genomes of Arabidopsis and Brassica. Eleven DNA fragments spaced over a 1.5 Mb contig in A. thaliana were used as RFLP probes in B. nigra. Three collinear representations of the A. thaliana contig were identified in B. nigra, with one interrupted by a large chromosomal inversion. Collinearity over this range will allow the resources generated by the Arabidopsis genome project to facilitate map-based cloning in Brassica crops.
引用
收藏
页码:13 / 20
页数:8
相关论文
共 38 条
[1]   HOMOEOLOGOUS RELATIONSHIPS OF RICE, WHEAT AND MAIZE CHROMOSOMES [J].
AHN, S ;
ANDERSON, JA ;
SORRELLS, ME ;
TANKSLEY, SD .
MOLECULAR & GENERAL GENETICS, 1993, 241 (5-6) :483-490
[2]   COMPARATIVE LINKAGE MAPS OF THE RICE AND MAIZE GENOMES [J].
AHN, S ;
TANKSLEY, SD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (17) :7980-7984
[3]  
AKBAR A, 1987, THESIS SWEDISH U AGR
[4]  
Arumuganathan K., 1991, PLANT MOL BIOL REP, V9, P211, DOI DOI 10.1007/BF02672069
[5]  
BONIERBALE MW, 1988, GENETICS, V120, P1095
[6]   RESTRICTION FRAGMENT LENGTH POLYMORPHISM LINKAGE MAP FOR ARABIDOPSIS-THALIANA [J].
CHANG, C ;
BOWMAN, JL ;
DEJOHN, AW ;
LANDER, ES ;
MEYEROWITZ, EM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (18) :6856-6860
[7]   A GENETIC-LINKAGE MAP OF RESTRICTION-FRAGMENT-LENGTH-POLYMORPHISM LOCI FOR BRASSICA-RAPA (SYN CAMPESTRIS) [J].
CHYI, YS ;
HOENECKE, ME ;
SERNYK, JL .
GENOME, 1992, 35 (05) :746-757
[8]  
DEAN C, 1993, 93173 NAT SCI F PUBL
[10]   TRANSCRIPTIONAL REGULATION OF THE ARABIDOPSIS-THALIANA CHALCONE SYNTHASE GENE [J].
FEINBAUM, RL ;
AUSUBEL, FM .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (05) :1985-1992