Conflict-induced behavioural adjustment: a clue to the executive functions of the prefrontal cortex

被引:443
作者
Mansouri, Farshad A. [1 ]
Tanaka, Keiji [1 ]
Buckley, Mark J. [2 ]
机构
[1] RIKEN, Brain Sci Inst, Cognit Brain Mapping Lab, Wako, Saitama 3510198, Japan
[2] Univ Oxford, Dept Expt Psychol, Oxford OX1 3UD, England
基金
英国医学研究理事会;
关键词
ANTERIOR CINGULATE CORTEX; OBSESSIVE-COMPULSIVE DISORDER; COGNITIVE CONTROL MECHANISMS; RESPONSE CONFLICT; STROOP PERFORMANCE; CONTEXTUAL CONTROL; NEURAL MECHANISMS; NEURONAL-ACTIVITY; FRONTAL-LOBE; TASK;
D O I
10.1038/nrn2538
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The behavioural adjustment that follows the experience of conflict has been extensively studied in humans, leading to influential models of executive-control adjustment. Recent studies have revealed striking similarities in conflict-induced behavioural adjustment between humans and monkeys, indicating that monkeys can provide a model to study the underlying neural substrates and mechanisms of such behaviour. These studies have advanced our knowledge about the role of different prefrontal brain regions, including the anterior cingulate cortex (ACC) and the dorsolateral prefrontal cortex (DLPFC), in executive-control adjustment and suggest a pivotal role for the DLPFC in the dynamic tuning of executive control and, consequently, in behavioural adaptation to changing environments.
引用
收藏
页码:141 / 152
页数:12
相关论文
共 97 条
[1]   A developmental fMRI study of the stroop color-word task [J].
Adleman, NE ;
Menon, V ;
Blasey, CM ;
White, CD ;
Warsofsky, IS ;
Glover, GH ;
Reiss, AL .
NEUROIMAGE, 2002, 16 (01) :61-75
[2]   Factors influencing Stroop performance in schizophrenia [J].
Barch, DM ;
Carter, CS ;
Cohen, JD .
NEUROPSYCHOLOGY, 2004, 18 (03) :477-484
[3]   Anterior cingulate cortex and response conflict: Effects of response modality and processing domain [J].
Barch, DM ;
Braver, TS ;
Akbudak, E ;
Conturo, T ;
Ollinger, J ;
Snyder, A .
CEREBRAL CORTEX, 2001, 11 (09) :837-848
[4]   Learning the value of information in an uncertain world [J].
Behrens, Timothy E. J. ;
Woolrich, Mark W. ;
Walton, Mark E. ;
Rushworth, Matthew F. S. .
NATURE NEUROSCIENCE, 2007, 10 (09) :1214-1221
[5]   The density of pyramidal and nonpyramidal neurons in anterior cingulate cortex of schizophrenic and bipolar subjects [J].
Benes, FM ;
Vincent, SL ;
Todtenkopf, M .
BIOLOGICAL PSYCHIATRY, 2001, 50 (06) :395-406
[6]   Conflict monitoring and cognitive control [J].
Botvinick, MM ;
Braver, TS ;
Barch, DM ;
Carter, CS ;
Cohen, JD .
PSYCHOLOGICAL REVIEW, 2001, 108 (03) :624-652
[7]   Anterior cingulate cortex and response conflict: Effects of frequency, inhibition and errors [J].
Braver, TS ;
Barch, DM ;
Gray, JR ;
Molfese, DL ;
Snyder, A .
CEREBRAL CORTEX, 2001, 11 (09) :825-836
[8]   Cognition and control in schizophrenia: A computational model of dopamine and prefrontal function [J].
Braver, TS ;
Barch, DM ;
Cohen, JD .
BIOLOGICAL PSYCHIATRY, 1999, 46 (03) :312-328
[9]   Cognitive and emotional influences in anterior cingulate cortex [J].
Bush, G ;
Luu, P ;
Posner, MI .
TRENDS IN COGNITIVE SCIENCES, 2000, 4 (06) :215-222
[10]   Anterior cingulate cortex and conflict detection: An update of theory and data [J].
Carter, Cameron S. ;
van Veen, Vincent .
COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE, 2007, 7 (04) :367-379