Probabilistic cost estimates for climate change mitigation

被引:226
作者
Rogelj, Joeri [1 ,2 ]
McCollum, David L. [2 ]
Reisinger, Andy [3 ]
Meinshausen, Malte [4 ,5 ]
Riahi, Keywan [2 ,6 ]
机构
[1] ETH, Inst Atmospher & Climate Sci, CH-8092 Zurich, Switzerland
[2] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria
[3] New Zealand Agr Greenhouse Gas Res Ctr, Palmerston North 4442, New Zealand
[4] Univ Melbourne, Sch Earth Sci, Melbourne, Vic 3010, Australia
[5] Potsdam Inst Climate Impact Res, PRIMAP Grp, D-14412 Potsdam, Germany
[6] Graz Univ Technol, A-8010 Graz, Austria
基金
瑞士国家科学基金会;
关键词
CARBON-CYCLE MODELS; ATMOSPHERE-OCEAN; SIMPLER MODEL; SCENARIOS; TARGETS;
D O I
10.1038/nature11787
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For more than a decade, the target of keeping global warming below 2 degrees C has been a key focus of the international climate debate(1). In response, the scientific community has published a number of scenario studies that estimate the costs of achieving such a target(2-5). Producing these estimates remains a challenge, particularly because of relatively well known, but poorly quantified, uncertainties, and owing to limited integration of scientific knowledge across disciplines(6). The integrated assessment community, on the one hand, has extensively assessed the influence of technological and socio-economic uncertainties on low-carbon scenarios and associated costs(2-4,7). The climate modelling community, on the other hand, has spent years improving its understanding of the geophysical response of the Earth system to emissions of greenhouse gases(8-12). This geophysical response remains a key uncertainty in the cost of mitigation scenarios but has been integrated with assessments of other uncertainties in only a rudimentary manner, that is, for equilibrium conditions(6,13). Here we bridge this gap between the two research communities by generating distributions of the costs associated with limiting transient global temperature increase to below specific values, taking into account uncertainties in four factors: geophysical, technological, social and political. Wefind that political choices that delay mitigation have the largest effect on the cost-risk distribution, followed by geophysical uncertainties, social factors influencing future energy demand and, lastly, technological uncertainties surrounding the availability of greenhouse gas mitigation options. Our information on temperature risk and mitigation costs provides crucial information for policy-making, because it clarifies the relative importance of mitigation costs, energy demand and the timing of global action in reducing the risk of exceeding a global temperature increase of 2 degrees C, or other limits such as 3 degrees C or 1.5 degrees C, across a wide range of scenarios.
引用
收藏
页码:79 / 83
页数:5
相关论文
共 28 条
  • [1] Atmospheric Lifetime of Fossil Fuel Carbon Dioxide
    Archer, David
    Eby, Michael
    Brovkin, Victor
    Ridgwell, Andy
    Cao, Long
    Mikolajewicz, Uwe
    Caldeira, Ken
    Matsumoto, Katsumi
    Munhoven, Guy
    Montenegro, Alvaro
    Tokos, Kathy
    [J]. ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, 2009, 37 : 117 - 134
  • [2] Delayed action and uncertain stabilisation targets. How much will the delay cost?
    Bosetti, Valentina
    Carraro, Carlo
    Sgobbi, Alessandra
    Tavoni, Massimo
    [J]. CLIMATIC CHANGE, 2009, 96 (03) : 299 - 312
  • [3] International climate policy architectures: Overview of the EMF 22 International Scenarios
    Clarke, Leon
    Edmonds, Jae
    Krey, Volker
    Richels, Richard
    Rose, Steven
    Tavoni, Massimo
    [J]. ENERGY ECONOMICS, 2009, 31 : S64 - S81
  • [4] Postponing emission reductions from 2020 to 2030 increases climate risks and long-term costs
    den Elzen, Michel G. J.
    van Vuuren, Detlef P.
    van Vliet, Jasper
    [J]. CLIMATIC CHANGE, 2010, 99 (1-2) : 313 - 320
  • [5] Edenhofer O, 2010, ENERG J, V31, P11
  • [6] Climate-carbon cycle feedback analysis:: Results from the C4MIP model intercomparison
    Friedlingstein, P.
    Cox, P.
    Betts, R.
    Bopp, L.
    Von Bloh, W.
    Brovkin, V.
    Cadule, P.
    Doney, S.
    Eby, M.
    Fung, I.
    Bala, G.
    John, J.
    Jones, C.
    Joos, F.
    Kato, T.
    Kawamiya, M.
    Knorr, W.
    Lindsay, K.
    Matthews, H. D.
    Raddatz, T.
    Rayner, P.
    Reick, C.
    Roeckner, E.
    Schnitzler, K. -G.
    Schnur, R.
    Strassmann, K.
    Weaver, A. J.
    Yoshikawa, C.
    Zeng, N.
    [J]. JOURNAL OF CLIMATE, 2006, 19 (14) : 3337 - 3353
  • [7] A review of uncertainties in global temperature projections over the twenty-first century
    Knutti, R.
    Allen, M. R.
    Friedlingstein, P.
    Gregory, J. M.
    Hegerl, G. C.
    Meehl, G. A.
    Meinshausen, M.
    Murphy, J. M.
    Plattner, G. -K.
    Raper, S. C. B.
    Stocker, T. F.
    Stott, P. A.
    Teng, H.
    Wigley, T. M. L.
    [J]. JOURNAL OF CLIMATE, 2008, 21 (11) : 2651 - 2663
  • [8] Implications of delayed participation and technology failure for the feasibility, costs, and likelihood of staying below temperature targets-Greenhouse gas mitigation scenarios for the 21st century
    Krey, Volker
    Riahi, Keywan
    [J]. ENERGY ECONOMICS, 2009, 31 : S94 - S106
  • [9] Mastrandrea M. D., 2010, GUIDANCE NOTE LEAD A, P3
  • [10] Overview of the Coupled Model Intercomparison Project
    Meehl, GA
    Covey, C
    McAvaney, B
    Latif, M
    Stouffer, RJ
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2005, 86 (01) : 89 - 93