Aqueous CO2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles

被引:1454
作者
Chen, Yihong [1 ]
Li, Christina W. [1 ]
Kanan, Matthew W. [1 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
关键词
ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; METAL-ELECTRODES; GOLD; EFFICIENCY; METHANOL;
D O I
10.1021/ja309317u
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Carbon dioxide reduction is an essential component of many prospective technologies for the renewable synthesis of carbon-containing fuels. Known catalysts for this reaction generally suffer from low energetic efficiency, poor product selectivity, and rapid deactivation. We show that the reduction of thick Au oxide films results in the formation of Au nanoparticles ("oxide-derived Au") that exhibit highly selective CO2 reduction to CO in water at overpotentials as low as 140 mV and retain their activity for at least 8 h. Under identical conditions, polycrystalline Au electrodes and several other nano-structured Au electrodes prepared via alternative methods require at least 200 mV of additional overpotential to attain comparable CO2 reduction activity and rapidly lose their activity. Electrokinetic studies indicate that the improved catalysis is linked to dramatically increased stabilization of the CO2 center dot- intermediate on the surfaces of the oxide-derived Au electrodes.
引用
收藏
页码:19969 / 19972
页数:4
相关论文
共 28 条
  • [1] [Anonymous], 2007, P US DEP EN WORKSH B
  • [2] Catalysis research of relevance to carbon management: Progress, challenges, and opportunities
    Arakawa, H
    Aresta, M
    Armor, JN
    Barteau, MA
    Beckman, EJ
    Bell, AT
    Bercaw, JE
    Creutz, C
    Dinjus, E
    Dixon, DA
    Domen, K
    DuBois, DL
    Eckert, J
    Fujita, E
    Gibson, DH
    Goddard, WA
    Goodman, DW
    Keller, J
    Kubas, GJ
    Kung, HH
    Lyons, JE
    Manzer, LE
    Marks, TJ
    Morokuma, K
    Nicholas, KM
    Periana, R
    Que, L
    Rostrup-Nielson, J
    Sachtler, WMH
    Schmidt, LD
    Sen, A
    Somorjai, GA
    Stair, PC
    Stults, BR
    Tumas, W
    [J]. CHEMICAL REVIEWS, 2001, 101 (04) : 953 - 996
  • [3] Augustynski J, 1998, STUD SURF SCI CATAL, V114, P107
  • [4] Barton ColeE., 2010, Carbon Dioxide as Chemical Feedstock, P291
  • [5] Tin Oxide Dependence of the CO2 Reduction Efficiency on Tin Electrodes and Enhanced Activity for Tin/Tin Oxide Thin-Film Catalysts
    Chen, Yihong
    Kanan, Matthew W.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (04) : 1986 - 1989
  • [6] Using a One-Electron Shuttle for the Multielectron Reduction of CO2 to Methanol: Kinetic, Mechanistic, and Structural Insights
    Cole, Emily Barton
    Lakkaraju, Prasad S.
    Rampulla, David M.
    Morris, Amanda J.
    Abelev, Esta
    Bocarsly, Andrew B.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (33) : 11539 - 11551
  • [7] Electrolysis of carbon dioxide in Solid Oxide Electrolysis Cells
    Ebbesen, Sune Dalgaard
    Mogensen, Mogens
    [J]. JOURNAL OF POWER SOURCES, 2009, 193 (01) : 349 - 358
  • [8] Syngas production via high-temperature steam/CO2 co-electrolysis: an economic assessment
    Fu, Qingxi
    Mabilat, Corentin
    Zahid, Mohsine
    Brisse, Annabelle
    Gautier, Ludmila
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (10) : 1382 - 1397
  • [9] Gileadi E., 1993, ELECTRODE KINETICS C
  • [10] Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy
    Graves, Christopher
    Ebbesen, Sune D.
    Mogensen, Mogens
    Lackner, Klaus S.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (01) : 1 - 23