Functional analysis of LjS']jSUT4, a vacuolar sucrose transporter from Lotus japonicus

被引:105
作者
Reinders, Anke [1 ]
Sivitz, Alicia B. [1 ]
Starker, Colby G. [1 ]
Gantt, J. Stephen [1 ]
Ward, John M. [1 ]
机构
[1] Univ Minnesota Twin Cities, Dept Plant Biol, St Paul, MN 55108 USA
关键词
sucrose transporter; vacuole; Lotus japonicus; electrophysiology; xenopus oocytes;
D O I
10.1007/s11103-008-9370-0
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sucrose transporters in the SUT family are important for phloem loading and sucrose uptake into sink tissues. The recent localization of type III SUTs AtSUT4 and HvSUT2 to the vacuole membrane suggests that SUTs also function in vacuolar sucrose transport. The transport mechanism of type III SUTs has not been analyzed in detail. LjSUT4, a type III sucrose transporter homolog from Lotus japonicus, is expressed in nodules and its transport activity has not been previously investigated. In this report, LjSUT4 was expressed in Xenopus oocytes and its transport activity assayed by two-electrode voltage clamping. LjSUT4 transported a range of glucosides including sucrose, salicin, helicin, maltose, sucralose and both alpha- and beta-linked synthetic phenyl glucosides. In contrast to other sucrose transporters, LjSUT4 did not transport the plant glucosides arbutin, fraxin and esculin. LjSUT4 showed a low affinity for sucrose (K (0.5) = 16 mM at pH 5.3). In addition to inward currents induced by sucrose, other evidence also indicated that LjSUT4 is a proton-coupled symporter: (14)C-sucrose uptake into LjSUT4-expressing oocytes was inhibited by CCCP and sucrose induced membrane depolarization in LjSUT4-expressing oocytes. A GFP-fusion of LjSUT4 localized to the vacuole membrane in Arabidopsis thaliana and in the roots and nodules of Medicago truncatula. Based on these results we propose that LjSUT4 functions in the proton-coupled uptake of sucrose and possibly other glucosides into the cytoplasm from the vacuole.
引用
收藏
页码:289 / 299
页数:11
相关论文
共 38 条
[1]   The sucrose transporter gene family in rice [J].
Aoki, N ;
Hirose, T ;
Scofield, GN ;
Whitfeld, PR ;
Furbank, RT .
PLANT AND CELL PHYSIOLOGY, 2003, 44 (03) :223-232
[2]   Nodulation studies in the model legume Medicago truncatula:: Advantages of using the constitutive EF1α promoter and limitations in detecting fluorescent reporter proteins in nodule tissues [J].
Auriac, Marie-Christine ;
Timmers, Antonius C. J. .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2007, 20 (09) :1040-1047
[3]   Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations [J].
Boisson-Dernier, A ;
Chabaud, M ;
Garcia, F ;
Bécard, G ;
Rosenberg, C ;
Barker, DG .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2001, 14 (06) :695-700
[4]   Transport mechanism of the cloned potato H+/sucrose cotransporter StSUT1 [J].
Boorer, KJ ;
Loo, DDF ;
Frommer, WB ;
Wright, EM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (41) :25139-25144
[5]   MEMBRANE-TRANSPORT IN ISOLATED VESICLES FROM SUGARBEET TAPROOT .2. EVIDENCE FOR A SUCROSE/H+-ANTIPORT [J].
BRISKIN, DP ;
THORNLEY, WR ;
WYSE, RE .
PLANT PHYSIOLOGY, 1985, 78 (04) :871-875
[6]   Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediates sucrose efflux under the control of the sucrose gradient and the proton motive force [J].
Carpaneto, A ;
Geiger, D ;
Bamberg, E ;
Sauer, N ;
Fromm, J ;
Hedrich, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (22) :21437-21443
[7]   Substrate specificity of the Arabidopsis thaliana sucrose transporter AtSUC2 [J].
Chandran, D ;
Reinders, A ;
Ward, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (45) :44320-44325
[8]   Phylogeny as a guide to structure and function of membrane transport proteins (Review) [J].
Chang, AB ;
Lin, R ;
Studley, WK ;
Tran, CV ;
Saier, MH .
MOLECULAR MEMBRANE BIOLOGY, 2004, 21 (03) :171-181
[9]   Sucrose transporter StSUT4 from potato affects flowering, tuberization, and shade avoidance response [J].
Chincinska, Izabela A. ;
Liesche, Johannes ;
Kruegel, Undine ;
Michalska, Justyna ;
Geigenberger, Peter ;
Grimm, Bernhard ;
Kuehn, Christina .
PLANT PHYSIOLOGY, 2008, 146 (02) :515-528
[10]   A gateway cloning vector set for high-throughput functional analysis of genes in planta [J].
Curtis, MD ;
Grossniklaus, U .
PLANT PHYSIOLOGY, 2003, 133 (02) :462-469