Generalizable patterns in neuroimaging:: How many principal components?

被引:131
作者
Hansen, LK
Larsen, J
Nielsen, FÅ
Strother, SC
Rostrup, E
Savoy, R
Lange, N
Sidtis, J
Svarer, C
Paulson, OB
机构
[1] Tech Univ Denmark, Dept Math Modeling, DK-2800 Lyngby, Denmark
[2] Univ Minnesota, Dept Neurol, Minneapolis, MN 55455 USA
[3] Univ Minnesota, Dept Radiol, Minneapolis, MN 55455 USA
[4] Univ Minnesota, Vet Affairs Med Ctr, PET Imaging Serv, Minneapolis, MN 55455 USA
[5] Univ Copenhagen, Hvidovre Hosp, Danish Ctr Magnet Resonance, DK-2650 Hvidovre, Denmark
[6] Massachusetts Gen Hosp, Dept Radiol, Charlestown, MA 02139 USA
[7] Harvard Univ, Sch Med, Belmont, MA 02178 USA
[8] McLean Hosp, Belmont, MA 02178 USA
[9] Rigshosp, Neurobiol Res Unit, DK-2100 Copenhagen, Denmark
关键词
D O I
10.1006/nimg.1998.0425
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Generalization can be defined quantitatively and can be used to assess the performance of principal component analysis (PCA). The generalizability of PCA depends on the number of principal components retained in the analysis. We provide analytic and test set estimates of generalization. We show how the generalization error can be used to select the number of principal components in two analyses of functional magnetic resonance imaging activation sets. (C) 1999 Academic Press.
引用
收藏
页码:534 / 544
页数:11
相关论文
共 30 条
[1]   FITTING AUTOREGRESSIVE MODELS FOR PREDICTION [J].
AKAIKE, H .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1969, 21 (02) :243-&
[2]  
ARDEKANI B, 1998, IN PRESS P BRAIN PET
[3]   Functional magnetic resonance image analysis of a large-scale neurocognitive network [J].
Bullmore, ET ;
RabeHesketh, S ;
Morris, RG ;
Williams, SCR ;
Gregory, L ;
Gray, JA ;
Brammer, MJ .
NEUROIMAGE, 1996, 4 (01) :16-33
[4]  
Diamantaras KI, 1996, Principal Component Neural Networks: Theory and Applications
[5]  
Efron B., 1994, INTRO BOOTSTRAP, V57, DOI DOI 10.1201/9780429246593
[6]  
EFRON B, 1983, SIAM MONOGR, V38
[7]   FUNCTIONAL CONNECTIVITY - THE PRINCIPAL-COMPONENT ANALYSIS OF LARGE (PET) DATA SETS [J].
FRISTON, KJ ;
FRITH, CD ;
LIDDLE, PF ;
FRACKOWIAK, RSJ .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1993, 13 (01) :5-14
[8]   CHARACTERIZING DYNAMIC BRAIN RESPONSES WITH FMRI - A MULTIVARIATE APPROACH [J].
FRISTON, KJ ;
FRITH, CD ;
FRACKOWIAK, RSJ ;
TURNER, R .
NEUROIMAGE, 1995, 2 (02) :166-172
[9]   NEURAL NETWORKS AND THE BIAS VARIANCE DILEMMA [J].
GEMAN, S ;
BIENENSTOCK, E ;
DOURSAT, R .
NEURAL COMPUTATION, 1992, 4 (01) :1-58
[10]   NEURAL NETWORK ENSEMBLES [J].
HANSEN, LK ;
SALAMON, P .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1990, 12 (10) :993-1001