Computer-aided classification of lung nodules on computed tomography images via deep learning technique

被引:350
作者
Hua, Kai-Lung [1 ]
Hsu, Che-Hao [1 ]
Hidayati, Hintami Chusnul [1 ]
Cheng, Wen-Huang [2 ]
Chen, Yu-Jen [3 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Comp Sci & Informat Engn, Taipei, Taiwan
[2] Acad Sinica, Res Ctr Informat Technol Innovat, Taipei 115, Taiwan
[3] MacKay Mem Hosp, Dept Radiat Oncol, Taipei 10449, Taiwan
来源
ONCOTARGETS AND THERAPY | 2015年 / 8卷
关键词
nodule classification; deep learning; deep belief network; convolutional neural network; DATABASE CONSORTIUM; DIAGNOSIS; PERFORMANCE; RESOURCE;
D O I
10.2147/OTT.S80733
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Lung cancer has a poor prognosis when not diagnosed early and unresectable lesions are present. The management of small lung nodules noted on computed tomography scan is controversial due to uncertain tumor characteristics. A conventional computer-aided diagnosis (CAD) scheme requires several image processing and pattern recognition steps to accomplish a quantitative tumor differentiation result. In such an ad hoc image analysis pipeline, every step depends heavily on the performance of the previous step. Accordingly, tuning of classification performance in a conventional CAD scheme is very complicated and arduous. Deep learning techniques, on the other hand, have the intrinsic advantage of an automatic exploitation feature and tuning of performance in a seamless fashion. In this study, we attempted to simplify the image analysis pipeline of conventional CAD with deep learning techniques. Specifically, we introduced models of a deep belief network and a convolutional neural network in the context of nodule classification in computed tomography images. Two baseline methods with feature computing steps were implemented for comparison. The experimental results suggest that deep learning methods could achieve better discriminative results and hold promise in the CAD application domain.
引用
收藏
页码:2015 / 2022
页数:8
相关论文
共 21 条
[1]  
[Anonymous], MED IMAGE COMPUTING
[2]  
[Anonymous], MED IMAGE COMPUTING
[3]  
[Anonymous], IM PROC ICIP 17 IEEE
[4]  
[Anonymous], 26 ANN INT C MACH LE
[5]  
[Anonymous], BIOM IM NAN MACR 201
[6]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[7]   Lung image database consortium: Developing a resource for the medical imaging research community [J].
Armato, SG ;
McLennan, G ;
McNitt-Gray, MF ;
Meyer, CR ;
Yankelevitz, D ;
Aberle, DR ;
Henschke, CI ;
Hoffman, EA ;
Kazerooni, EA ;
MacMahon, H ;
Reeves, AP ;
Croft, BY ;
Clarke, LP .
RADIOLOGY, 2004, 232 (03) :739-748
[8]  
Bengio Yoshua, 2006, Advances in Neural Information Processing Systems 19, V19, P153
[9]   Computer-aided US Diagnosis of Breast Lesions by Using Cell-based Contour Grouping [J].
Cheng, Jie-Zhi ;
Chou, Yi-Hong ;
Huang, Chiun-Sheng ;
Chang, Yeun-Chung ;
Tiu, Chui-Mei ;
Chen, Kuei-Wu ;
Chen, Chung-Ming .
RADIOLOGY, 2010, 255 (03) :746-754
[10]   Computer-aided diagnosis in medical imaging: Historical review, current status and future potential [J].
Doi, Kunio .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2007, 31 (4-5) :198-211