Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose

被引:498
作者
Chen, Li-Feng [1 ]
Huang, Zhi-Hong [1 ]
Liang, Hai-Wei [1 ]
Yao, Wei-Tang [2 ]
Yu, Zi-You [1 ]
Yu, Shu-Hong [1 ]
机构
[1] Univ Sci & Technol China, Dept Chem, Hefei Natl Lab Phys Sci Microscale, Div Nanomat & Chem, Hefei 230026, Anhui, Peoples R China
[2] Hefei Univ Technol, Sch Mat Sci & Engn, Lab Funct Nanomat & Devices, Hefei 230039, Peoples R China
基金
中国国家自然科学基金;
关键词
CAPACITIVE ENERGY-STORAGE; LITHIUM-ION BATTERIES; HIGH-PERFORMANCE; ELECTROCHEMICAL CAPACITORS; ACTIVATED CARBON; GRAPHENE-OXIDE; PAPER; ULTRACAPACITORS; REDUCTION; NANOTUBES;
D O I
10.1039/c3ee42366b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To meet the pressing demands for portable and flexible equipment in contemporary society, it is strongly required to develop next-generation inexpensive, flexible, lightweight, and sustainable supercapacitor systems with large power densities, long cycle life, and good operational safety. Here, we fabricate a flexible all-solid-state supercapacitor device with nitrogen-doped pyrolyzed bacterial cellulose (p-BC-N) as the electrode material via a low-cost, eco-friendly, low-temperature, and scalable fabrication hydrothermal synthesis. The pliable device can reversibly deliver a maximum power density of 390.53 kW kg(-1) and exhibits a good cycling durability with similar to 95.9% specific capacitance retained after 5000 cycles. Therefore, this nitrogen-doped carbon nanofiber electrode material holds significant promise as a flexible, efficient electrode material.
引用
收藏
页码:3331 / 3338
页数:8
相关论文
共 45 条
[1]   Fiber Supercapacitors Made of Nanowire-Fiber Hybrid Structures for Wearable/Flexible Energy Storage [J].
Bae, Joonho ;
Song, Min Kyu ;
Park, Young Jun ;
Kim, Jong Min ;
Liu, Meilin ;
Wang, Zhong Lin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (07) :1683-1687
[2]   Flexible Zn2SnO4/MnO2 Core/Shell Nanocable-Carbon Microfiber Hybrid Composites for High-Performance Supercapacitor Electrodes [J].
Bao, Lihong ;
Zang, Jianfeng ;
Li, Xiaodong .
NANO LETTERS, 2011, 11 (03) :1215-1220
[3]   Direct synthesis of high concentration N-doped coiled carbon nanofibers from amine flames and its electrochemical properties [J].
Cao, Bing ;
Zhang, Bin ;
Jiang, Xudong ;
Zhang, Yupeng ;
Pan, Chunxu .
JOURNAL OF POWER SOURCES, 2011, 196 (18) :7868-7873
[4]   Synthesis of Nitrogen-Doped Porous Carbon Nanofibers as an Efficient Electrode Material for Supercapacitors [J].
Chen, Li-Feng ;
Zhang, Xu-Dong ;
Liang, Hai-Wei ;
Kong, Mingguang ;
Guan, Qing-Fang ;
Chen, Ping ;
Wu, Zhen-Yu ;
Yu, Shu-Hong .
ACS NANO, 2012, 6 (08) :7092-7102
[5]   Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor [J].
Chen, Ping ;
Yang, Jing-Jing ;
Li, Shan-Shan ;
Wang, Zheng ;
Xiao, Tian-Yuan ;
Qian, Yu-Hong ;
Yu, Shu-Hong .
NANO ENERGY, 2013, 2 (02) :249-256
[6]   Binary and Ternary Doping of Nitrogen, Boron, and Phosphorus into Carbon for Enhancing Electrochemical Oxygen Reduction Activity [J].
Choi, Chang Hyuck ;
Park, Sung Hyeon ;
Woo, Seong Ihl .
ACS NANO, 2012, 6 (08) :7084-7091
[7]   Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors [J].
El-Kady, Maher F. ;
Strong, Veronica ;
Dubin, Sergey ;
Kaner, Richard B. .
SCIENCE, 2012, 335 (6074) :1326-1330
[8]   Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density [J].
Fan, Zhuangjun ;
Yan, Jun ;
Wei, Tong ;
Zhi, Linjie ;
Ning, Guoqing ;
Li, Tianyou ;
Wei, Fei .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (12) :2366-2375
[9]   Towards high-performance polymer-based thermoelectric materials [J].
He, Ming ;
Qiu, Feng ;
Lin, Zhiqun .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (05) :1352-1361
[10]  
He M, 2012, J MATER CHEM, V22, P24254, DOI [10.1039/c2jm3378c, 10.1039/c2jm33784c]