Metal-ion affinity and specificity in EF-hand proteins: coordination geometry and domain plasticity in parvalbumin

被引:84
作者
Cates, MS
Berry, MB
Ho, EL
Li, Q
Potter, JD
Phillips, GN
机构
[1] Rice Univ, Dept Biochem & Cell Biol, Houston, TX 77005 USA
[2] Rice Univ, WM Keck Ctr Computat Biol, Houston, TX 77005 USA
[3] Univ Miami, Sch Med, Dept Mol & Cellular Pharmacol, Miami, FL 33136 USA
关键词
Ca2+ binding; EF-hand proteins; Mg2+ binding; parvalbumin; protein plasticity;
D O I
10.1016/S0969-2126(00)80060-X
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: The EF-hand family is a large set of Ca2+-binding proteins that contain characteristic helix-loop-helix binding motifs that are highly conserved in sequence. Members of this family include parvalbumin and many prominent regulatory proteins such as calmodulin and troponin C. EF-hand proteins are involved in a variety of physiological processes including cell-cycle regulation, second messenger production, muscle contraction, miorotubule organization and vision. Results: We have determined the structures of parvalbumin mutants designed to explore the role of the last coordinating residue of the Ca2+-binding loop. An E101D substitution has been made in the parvalbumin EF site. The substitution decreases the Ca2+-binding affinity 100-fold and increases the Mg2+-binding affinity 10-fold. Both the Ca2+- and Mg2+-bound structures have been determined, and a structural basis has been proposed for the metal-ion-binding properties. Conclusions: The E101D mutation does not affect the Mg2+ coordination geometry of the binding loop, but it does pull the F helix 1.1 Angstrom towards the loop. The E101D-Ca2+ structure reveals that this mutant cannot obtain the sevenfold coordination preferred by Ca2+, presumably because of strain limits imposed by tertiary structure. Analysis of these results relative to previously reported structural information supports a model wherein the characteristics of the last coordinating residue and the plasticity of the Ca2+-binding loop delimit the allowable geometries for the coordinating sphere.
引用
收藏
页码:1269 / 1278
页数:10
相关论文
共 47 条
[1]  
[Anonymous], MATLAB
[2]  
AUSUBEL FM, 1987, CURRENT PROTOCOL S15, V1
[3]   STRUCTURE OF CALMODULIN REFINED AT 2.2 A RESOLUTION [J].
BABU, YS ;
BUGG, CE ;
COOK, WJ .
JOURNAL OF MOLECULAR BIOLOGY, 1988, 204 (01) :191-204
[4]  
Berchtold MW, 1996, GUIDEBOOK CALCIUM BI, P123
[5]   Structure of a calpain Ca2+-binding domain reveals a novel EF-hand and Ca2+-induced conformational changes [J].
Blanchard, H ;
Grochulski, P ;
Li, Y ;
Arthur, JSC ;
Davies, PL ;
Elce, JS ;
Cygler, M .
NATURE STRUCTURAL BIOLOGY, 1997, 4 (07) :532-538
[6]   CALMODULIN-LIKE EFFECT OF ONCOMODULIN ON CELL-PROLIFERATION [J].
BLUM, JK ;
BERCHTOLD, MW .
JOURNAL OF CELLULAR PHYSIOLOGY, 1994, 160 (03) :455-462
[7]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[8]  
BRUNGER AT, 1992, XPLOR VERSION 3 1 SY
[9]   CELL-CYCLE-SPECIFIC GENES DIFFERENTIALLY EXPRESSED IN HUMAN LEUKEMIAS [J].
CALABRETTA, B ;
KACZMAREK, L ;
MARS, W ;
OCHOA, D ;
GIBSON, CW ;
HIRSCHHORN, RR ;
BASERGA, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1985, 82 (13) :4463-4467
[10]   RIBBON MODELS OF MACROMOLECULES [J].
CARSON, M .
JOURNAL OF MOLECULAR GRAPHICS, 1987, 5 (02) :103-&