Reaction and diffusion on growing domains: Scenarios for robust pattern formation

被引:283
作者
Crampin, EJ [1 ]
Gaffney, EA [1 ]
Maini, PK [1 ]
机构
[1] Math Inst, Ctr Math Biol, Oxford OX1 3LB, England
基金
英国惠康基金;
关键词
D O I
10.1006/bulm.1999.0131
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigate the sequence of patterns generated by a reaction-diffusion system on a growing domain. We derive a general evolution equation to incorporate domain growth in reaction-diffusion models and consider the case of slow and isotropic domain growth in one spatial dimension. We use a self-similarity argument to predict a frequency-doubling sequence of patterns for exponential domain growth and we find numerically that frequency-doubling is realized for a finite range of exponential growth rate. We consider pattern formation under different forms for the growth and show that in one dimension domain growth may be a mechanism for increased robustness of pattern formation. (C) 1999 Society for Mathematical Biology.
引用
收藏
页码:1093 / 1120
页数:28
相关论文
共 27 条
[1]  
[Anonymous], 1993, BIOMATHEMATICS
[2]  
ARCURI P, 1986, J MATH BIOL, V24, P141
[3]   HOW WELL DOES TURINGS THEORY OF MORPHOGENESIS WORK [J].
BARD, J ;
LAUDER, I .
JOURNAL OF THEORETICAL BIOLOGY, 1974, 45 (02) :501-531
[4]   A PERTURBATION ANALYSIS OF A MECHANICAL MODEL FOR STABLE SPATIAL PATTERNING IN EMBRYOLOGY [J].
BENTIL, DE ;
MURRAY, JD .
JOURNAL OF NONLINEAR SCIENCE, 1992, 2 (04) :453-480
[5]   PATTERN-FORMATION BY REACTION-DIFFUSION INSTABILITIES - APPLICATION TO MORPHOGENESIS IN DROSOPHILA [J].
BUNOW, B ;
KERNEVEZ, JP ;
JOLY, G ;
THOMAS, D .
JOURNAL OF THEORETICAL BIOLOGY, 1980, 84 (04) :629-649
[6]   EXPERIMENTAL-EVIDENCE OF A SUSTAINED STANDING TURING-TYPE NONEQUILIBRIUM CHEMICAL-PATTERN [J].
CASTETS, V ;
DULOS, E ;
BOISSONADE, J ;
DEKEPPER, P .
PHYSICAL REVIEW LETTERS, 1990, 64 (24) :2953-2956
[7]  
CRAMPIN EJ, UNPUB REACTION DIFFU
[8]   TURING-TYPE CHEMICAL-PATTERNS IN THE CHLORITE-IODIDE-MALONIC ACID REACTION [J].
DEKEPPER, P ;
CASTETS, V ;
DULOS, E ;
BOISSONADE, J .
PHYSICA D, 1991, 49 (1-2) :161-169
[9]   PATTERN-FORMATION IN GENERALIZED TURING SYSTEMS .1. STEADY-STATE PATTERNS IN SYSTEMS WITH MIXED BOUNDARY-CONDITIONS [J].
DILLON, R ;
MAINI, PK ;
OTHMER, HG .
JOURNAL OF MATHEMATICAL BIOLOGY, 1994, 32 (04) :345-393
[10]   STRIPES OR SPOTS - NONLINEAR EFFECTS IN BIFURCATION OF REACTION-DIFFUSION EQUATIONS ON THE SQUARE [J].
ERMENTROUT, B .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1991, 434 (1891) :413-417