Bootstrap-based improvements for inference with clustered errors

被引:2296
作者
Cameron, A. Colin [1 ]
Gelbach, Jonah B. [2 ]
Miller, Douglas L. [1 ]
机构
[1] Univ Calif Davis, Dept Econ, Davis, CA 95616 USA
[2] Univ Arizona, Dept Econ, Tucson, AZ 85721 USA
关键词
D O I
10.1162/rest.90.3.414
中图分类号
F [经济];
学科分类号
02 ;
摘要
Researchers have increasingly realized the need to account for within-group dependence in estimating standard errors of regression parameter estimates. The usual solution is to calculate cluster-robust standard errors that permit heteroskedasticity and within-cluster error correlation. but presume that the number of clusters is large. Standard asymptotic tests can over-reject, however, with few (five to thirty) clusters. We investigate inference using cluster bootstrap-t procedures that provide asymptotic refinement. These procedures are evaluated using Monte Carlos, including the example of Bertrand, Duflo, and Mullai-nathan (2004). Rejection rates of 10% using standard methods can be reduced to the nominal size of 5% using our methods.
引用
收藏
页码:414 / 427
页数:14
相关论文
共 38 条
  • [1] ANGRIST J, 2002, 9389 NBER
  • [2] [Anonymous], ADV EC ECONOMETRICS
  • [3] ARELLANO M, 1987, OXFORD B ECON STAT, V49, P431
  • [4] Bell R.M., 2002, Survey Methodology, V28, P169
  • [5] How much should we trust differences-in-differences estimates?
    Bertrand, M
    Duflo, E
    Mullainathan, S
    [J]. QUARTERLY JOURNAL OF ECONOMICS, 2004, 119 (01) : 249 - 275
  • [6] The bootstrain and multiple imputations: Harnessing increased computing power for improved statistical tests
    Brownstone, D
    Valletta, R
    [J]. JOURNAL OF ECONOMIC PERSPECTIVES, 2001, 15 (04) : 129 - 141
  • [7] Cameron A.C., 2005, MICROECONOMETRICS ME, DOI DOI 10.1017/CBO9780511811241
  • [8] CAMERON AC, 2006, 0621 UC DAV
  • [9] Davidson AC., 1997, BOOTSTRAP METHODS TH, DOI [DOI 10.1017/CBO9780511802843, 10.1017/CBO9780511802843]
  • [10] Davidson R, 1999, ECONOMET THEOR, V15, P361