Catalyst-free vapor-phase transport growth of vertically aligned ZnO nanorods on 6H-SiC and (11-20)Al2O3

被引:38
作者
Mofor, AC [1 ]
Bakin, AS
Elshaer, A
Fuhrmann, D
Bertram, F
Hangleiter, A
Christen, J
Waag, A
机构
[1] Tech Univ Braunschweig, Inst Semicond Technol, Hans Sommer Str 66, D-38106 Braunschweig, Germany
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Appl Phys, D-38106 Braunschweig, Germany
[3] Univ Magdeburg, Dept Solid State Phys, D-39106 Magdeburg, Germany
来源
PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 3, NO 4 | 2006年 / 3卷 / 04期
关键词
D O I
10.1002/pssc.200564760
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
ZnO nanostructures are expected to pave the way for many interesting applications in optoelectronics, spin electronics gas sensor technology and biomedicine. Fabrication methods, especially for nanorods have been based mostly on catalyst-assisted growth methods that employ metal-organic sources and other contaminating agents like graphite to grow ZnO nanorods at relatively high temperatures. We report on the growth of ZnO nanorods on 6H-SiC and (11-20)Al2O3 using purely elemental sources, without catalysis and at relatively low temperatures and growth pressure in a specially designed vapor-phase transport system. ZnO nanorods with widths of 80-900 nm and lengths of 4-12 mu m were obtained. Nanorod concentrations of up to 10(9) cm(-2) with homogenous luminescence and high purity were noted. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:1046 / +
页数:3
相关论文
共 15 条
[1]   Large hexagonal arrays of aligned ZnO nanorods [J].
Banerjee, D ;
Rybczynski, J ;
Huang, JY ;
Wang, DZ ;
Kempa, K ;
Ren, ZF .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2005, 80 (04) :749-752
[2]   Large-quantity free-standing ZnO nanowires [J].
Banerjee, D ;
Lao, JY ;
Wang, DZ ;
Huang, JY ;
Ren, ZF ;
Steeves, D ;
Kimball, B ;
Sennett, M .
APPLIED PHYSICS LETTERS, 2003, 83 (10) :2061-2063
[3]   OPTICAL-PROPERTIES OF GOLD ACCEPTOR AND DONOR LEVELS IN SILICON [J].
BRAUN, S ;
GRIMMEISS, HG .
JOURNAL OF APPLIED PHYSICS, 1974, 45 (06) :2658-2665
[4]  
GIVARGIZOV EI, 2003, NATURE, V1059, P20
[5]   Synthesis of ZnO nanorods by solid state reaction at room temperature [J].
Jin, CF ;
Yuan, X ;
Ge, WW ;
Hong, JM ;
Xin, XQ .
NANOTECHNOLOGY, 2003, 14 (06) :667-669
[6]   Single nanowire lasers [J].
Johnson, JC ;
Yan, HQ ;
Schaller, RD ;
Haber, LH ;
Saykally, RJ ;
Yang, PD .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (46) :11387-11390
[7]   Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition [J].
Liu, X ;
Wu, XH ;
Cao, H ;
Chang, RPH .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (06) :3141-3147
[8]   Bound exciton and donor-acceptor pair recombinations in ZnO [J].
Meyer, BK ;
Alves, H ;
Hofmann, DM ;
Kriegseis, W ;
Forster, D ;
Bertram, F ;
Christen, J ;
Hoffmann, A ;
Strassburg, M ;
Dworzak, M ;
Haboeck, U ;
Rodina, AV .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2004, 241 (02) :231-260
[9]   ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy [J].
Park, WI ;
Yi, GC ;
Kim, MY ;
Pennycook, SJ .
ADVANCED MATERIALS, 2002, 14 (24) :1841-1843
[10]  
Vanheusden K, 1996, APPL PHYS LETT, V68, P403, DOI 10.1063/1.116699