Studies on LiFePO4 as Cathode Material in Li-Ion Batteries

被引:30
作者
Illig, J. [1 ]
Chrobak, T. [1 ]
Ender, M. [1 ]
Schmidt, J. P. [1 ]
Klotz, D. [1 ]
Ivers-Tiffee, E. [1 ]
机构
[1] Karlsruher Inst Technol KIT, Inst Werkstoffe Elektrotech IWE, D-76131 Karlsruhe, Germany
来源
BATTERIES AND ENERGY TECHNOLOGY (GENERAL) - 217TH ECS MEETING | 2010年 / 28卷 / 30期
关键词
RECHARGEABLE LITHIUM BATTERIES; OXIDE FUEL-CELLS; ELECTROCHEMICAL IMPEDANCE; ELECTRODE MATERIALS; DEFECT CHEMISTRY; RATE PERFORMANCE; MODEL; DECONVOLUTION; CONDUCTIVITY; SPECTROSCOPY;
D O I
10.1149/1.3505456
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium iron phosphate is a promising cathode material for the use in lithium-ion batteries meeting the demands of good stability during cycling and safe operation due to reduced risk of thermal runaway. However, slow solid state diffusion and poor electrical conductivity reduce power capability. For further improvement, the identification of the rate determining processes is necessary. Electrochemical impedance spectroscopy (EIS) has proven to be a powerful tool for the characterization of electrochemical systems. In this contribution a deconvolution of the impedance with the distribution of relaxation times (DRT) is used to obtain a better resolution in frequency domain. Therewith, the cathodic and anodic polarization processes are identified and an impedance model for the cell is proposed.
引用
收藏
页码:3 / 17
页数:15
相关论文
共 32 条
[1]   Anisotropy of electronic and ionic transport in LiFePO4 single crystals [J].
Amin, Ruhul ;
Balaya, Palani ;
Maier, Joachim .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (01) :A13-A16
[2]   IMPEDANCE SPECTROSCOPY OF LITHIUM ELECTRODES .1. GENERAL BEHAVIOR IN PROPYLENE CARBONATE SOLUTIONS AND THE CORRELATION TO SURFACE-CHEMISTRY AND CYCLING EFFICIENCY [J].
AURBACH, D ;
ZABAN, A .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1993, 348 (1-2) :155-179
[3]  
Boukamp B. A., 1995, J ELECTROCHEMICAL SO, V142
[4]   Ion transport theory of nonaqueous electrolytes.: LiClO4 in γ-butyrolactone:: the quasi lattice approach [J].
Chagnes, A ;
Carré, B ;
Willmann, P ;
Lemordant, D .
ELECTROCHIMICA ACTA, 2001, 46 (12) :1783-1791
[5]   ELECTRICAL-CONDUCTIVITY OF AMORPHOUS-CARBON AND AMORPHOUS HYDROGENATED CARBON [J].
DASGUPTA, D ;
DEMICHELIS, F ;
TAGLIAFERRO, A .
PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1991, 63 (06) :1255-1266
[6]   Computer simulations of the impedance response of lithium rechargeable batteries [J].
Doyle, M ;
Meyers, JP ;
Newman, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (01) :99-110
[7]   LiFePO4 synthesis routes for enhanced electrochemical performance [J].
Franger, S ;
Le Cras, F ;
Bourbon, C ;
Rouault, H .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (10) :A231-A233
[8]   The importance of interphase contacts in Li ion electrodes: The meaning of the high-frequency impedance arc [J].
Gaberscek, Miran ;
Moskon, Joze ;
Erjavec, Bostjan ;
Dominko, Robert ;
Jamnik, Janez .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (10) :A170-A174
[9]   Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells [J].
Leonide, A. ;
Sonn, V. ;
Weber, A. ;
Ivers-Tiffee, E. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (01) :B36-B41
[10]   Two parallel diffusion paths model for interpretation of PITT and EIS responses from non-uniform intercalation electrodes [J].
Levi, MD ;
Wang, C ;
Aurbach, D .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2004, 561 (1-2) :1-11