Levy noise, Levy flights, Levy fluctuations

被引:16
作者
Cáceres, MO
机构
[1] Comis Nacl Energia Atom, Ctr Atom Bariloche, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[2] Comis Nacl Energia Atom, Inst Balseiro, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[3] Univ Nacl Cuyo, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1999年 / 32卷 / 33期
关键词
D O I
10.1088/0305-4470/32/33/301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is concerned with a Levy noise characterized, for t is an element of [0, infinity], by the functional G(xi)([k(t)]) = exp(-b integral(0)(infinity)\k(s)\(alpha) ds), with 0 < alpha less than or equal to 2. Then Levy flights can be defined through a stochastic differential equations rather than the:usual Chapmann-Kolmogorov equation. We have used this functional approach to solve a plane rotor in the presence of Levy noise. The linear damped stochastic process driven by Levy noise is revisited and its non-autonomous and non-Markovian generalizations have been solved in the context of our functional analysis.
引用
收藏
页码:6009 / 6019
页数:11
相关论文
共 18 条
[1]  
BELLMAN R, 1970, INTRO MATRIX ANAL, P181
[2]   The generalized Ornstein-Uhlenbeck process [J].
Caceres, MO ;
Budini, AA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (24) :8427-8444
[3]  
CAUCHY A, 1853, CR HEBD ACAD SCI, V37, P202
[4]   Fractional dynamics in random velocity fields [J].
Compte, A ;
Caceres, MO .
PHYSICAL REVIEW LETTERS, 1998, 81 (15) :3140-3143
[5]   The Brownian movement and stochastic equations [J].
Doob, JL .
ANNALS OF MATHEMATICS, 1942, 43 :351-369
[6]  
FEDER J, 1989, FRACTAL
[7]  
FIORANI D, 1994, NATO ADV SCI INST SE, V260, P645
[8]  
Levy P., 1937, Theorie de l'addition des variables aleatoires, vol. XVII of Monographies des Probabilites
[9]  
calcul des probabilites et ses applications
[10]   FRACTIONAL BROWNIAN MOTIONS FRACTIONAL NOISES AND APPLICATIONS [J].
MANDELBROT, BB ;
VANNESS, JW .
SIAM REVIEW, 1968, 10 (04) :422-+