Remove the Residual Additives toward Enhanced Efficiency with Higher Reproducibility in Polymer Solar Cells

被引:225
作者
Ye, Long [1 ,3 ]
Jing, Yan [1 ]
Guo, Xia [1 ,3 ]
Sun, Hao [2 ]
Zhang, Shaoqing [1 ]
Zhang, Maojie [1 ]
Huo, Lijun [1 ]
Hou, Jianhui [1 ]
机构
[1] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, State Key Lab Polymer Phys & Chem, Beijing 100190, Peoples R China
[2] Bruker Beijing Sci Technol Co Ltd, Bruker Nano Surfaces Div, Beijing 100081, Peoples R China
[3] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China
关键词
VERTICAL PHASE-SEPARATION; OPEN-CIRCUIT VOLTAGE; CONJUGATED POLYMER; MORPHOLOGY; PERFORMANCE; POLY(3-HEXYLTHIOPHENE); INTERFACE; IMPROVE; DESIGN; BLENDS;
D O I
10.1021/jp404395q
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Undesirable efficiency reproducibility was sometimes observed in fabrication of high performance polymer solar cell devices incorporating high boiling point additives. The anomalous results originated from the slow drying of additives not only reduced the controllability of device performance but also impeded the studies of device physics and material design. How to remove the residual additives and achieve stable interface properties is crucial for both the academic and industrial community. Herein, we demonstrated that the morphological stability is enhanced and efficiency reproducibility is increased obviously from 7.07 +/- 0.27% to 7.53 +/- 0.12% after spin-coating inert solvents for the PBDTTT-C-T/PCBM system. The relationship between processing conditions and photovoltaic performance was well explored and demonstrated via multiple techniques including atomic force microscopy, Kelvin probe force microscopy, transmission electron microscopy, and X-ray photospectroscopy. Most importantly, this method was successfully employed in more than five representative donor polymers. Our study suggested that the slow drying process of the residual high boiling point additives could induce undesirable morphological variation as well as unfavorable interfacial contact, and by washing with low boiling point "inert" solvent, like methanol, the negative influence caused by the residual additive can be avoided and hence the additives would perform more efficiently in the optimization of device performance of highly efficient PSCs.
引用
收藏
页码:14920 / 14928
页数:9
相关论文
共 42 条
[1]   Dithienogermole As a Fused Electron Donor in Bulk Heterojunction Solar Cells [J].
Amb, Chad M. ;
Chen, Song ;
Graham, Kenneth R. ;
Subbiah, Jegadesan ;
Small, Cephas E. ;
So, Franky ;
Reynolds, John R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (26) :10062-10065
[2]   Poly(diketopyrrolopyrrole-terthiophene) for Ambipolar Logic and Photovoltaics [J].
Bijleveld, Johan C. ;
Zoombelt, Arjan P. ;
Mathijssen, Simon G. J. ;
Wienk, Martijn M. ;
Turbiez, Mathieu ;
de Leeuw, Dago M. ;
Janssen, Rene A. J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (46) :16616-+
[3]   Effect of Trace Solvent on the Morphology of P3HT:PCBM Bulk Heterojunction Solar Cells [J].
Chang, Lilian ;
Lademann, Hans W. A. ;
Bonekamp, Joerg-Bernd ;
Meerholz, Klaus ;
Moule, Adam J. .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (10) :1779-1787
[4]   Polymer solar cells with enhanced open-circuit voltage and efficiency [J].
Chen, Hsiang-Yu ;
Hou, Jianhui ;
Zhang, Shaoqing ;
Liang, Yongye ;
Yang, Guanwen ;
Yang, Yang ;
Yu, Luping ;
Wu, Yue ;
Li, Gang .
NATURE PHOTONICS, 2009, 3 (11) :649-653
[5]   Recent Progress in Polymer Solar Cells: Manipulation of Polymer: Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells [J].
Chen, Li-Min ;
Hong, Ziruo ;
Li, Gang ;
Yang, Yang .
ADVANCED MATERIALS, 2009, 21 (14-15) :1434-1449
[6]   Efficiency enhancement for bulk heterojunction photovoltaic cells via incorporation of alcohol soluble conjugated polymer interlayer [J].
Chen, Yu ;
Jiang, Zhitao ;
Gao, Mei ;
Watkins, Scott E. ;
Lu, Ping ;
Wang, Haiqiao ;
Chen, Xiwen .
APPLIED PHYSICS LETTERS, 2012, 100 (20)
[7]   Bulk Heterojunction Solar Cells Using Thieno[3,4-c]pyrrole-4,6-dione and Dithieno[3,2-b:2′,3′-d]silole Copolymer with a Power Conversion Efficiency of 7.3% [J].
Chu, Ta-Ya ;
Lu, Jianping ;
Beaupre, Serge ;
Zhang, Yanguang ;
Pouliot, Jean-Remi ;
Wakim, Salem ;
Zhou, Jiayun ;
Leclerc, Mario ;
Li, Zhao ;
Ding, Jianfu ;
Tao, Ye .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (12) :4250-4253
[8]   Systematic Investigation of Benzodithiophene- and Diketopyrrolopyrrole-Based Low-Bandgap Polymers Designed for Single Junction and Tandem Polymer Solar Cells [J].
Dou, Letian ;
Gao, Jing ;
Richard, Eric ;
You, Jingbi ;
Chen, Chun-Chao ;
Cha, Kitty C. ;
He, Youjun ;
Li, Gang ;
Yang, Yang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (24) :10071-10079
[9]   High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct with solvent additive [J].
Guo, Xia ;
Cui, Chaohua ;
Zhang, Maojie ;
Huo, Lijun ;
Huang, Ye ;
Hou, Jianhui ;
Li, Yongfang .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (07) :7943-7949
[10]  
He ZC, 2012, NAT PHOTONICS, V6, P591, DOI [10.1038/nphoton.2012.190, 10.1038/NPHOTON.2012.190]