The method of finite spheres with improved numerical integration

被引:119
作者
De, S [1 ]
Bathe, KJ [1 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
关键词
Boundary conditions - Cost effectiveness - Finite element method - Finite volume method - Functions - Integration - Interpolation - Least squares approximations;
D O I
10.1016/S0045-7949(01)00124-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The method of finite spheres was introduced as a truly meshless technique with the goal of achieving computational efficiency in a mesh-free procedure. In this paper we report several new numerical integration rules that result in a significant reduction in computational cost. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:2183 / 2196
页数:14
相关论文
共 13 条
[1]   A critical assessment of the truly Meshless Local Petrov-Galerkin (MLPG), and Local Boundary Integral Equation (LBIE) methods [J].
Atluri, SN ;
Kim, HG ;
Cho, JY .
COMPUTATIONAL MECHANICS, 1999, 24 (05) :348-372
[2]  
Bathe K.J., 2006, Finite Element Procedures
[3]   The method of finite spheres [J].
De, S ;
Bathe, KJ .
COMPUTATIONAL MECHANICS, 2000, 25 (04) :329-345
[4]   Displacement/pressure mixed interpolation in the method of finite spheres [J].
De, S ;
Bathe, KJ .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2001, 51 (03) :275-292
[5]   Towards an efficient meshless computational technique: the method of finite spheres [J].
De, S ;
Bathe, KJ .
ENGINEERING COMPUTATIONS, 2001, 18 (1-2) :170-192
[6]  
Duarte CA, 1996, NUMER METH PART D E, V12, P673, DOI DOI 10.1002/(SICI)1098-2426(199611)12:6<673::AID-NUM3>3.0.CO
[7]  
2-P
[8]   The partition of unity finite element method: Basic theory and applications [J].
Melenk, JM ;
Babuska, I .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 139 (1-4) :289-314
[9]  
Nayroles B., 1992, Comput. Mech., V10, P307, DOI DOI 10.1007/BF00364252
[10]  
Onate E, 1996, INT J NUMER METH ENG, V39, P3839, DOI 10.1002/(SICI)1097-0207(19961130)39:22<3839::AID-NME27>3.0.CO