Yarrowia lipolytica Pex20p, Saccharomyces cerevisiae Pex18p/Pex21p and mammalian Pex5pL fulfil a common function in the early steps of the peroxisomal PTS2 import pathway

被引:76
作者
Einwächter, H [1 ]
Sowinski, S [1 ]
Kunau, WH [1 ]
Schliebs, W [1 ]
机构
[1] Ruhr Univ Bochum, Fak Med, Abt Zellbiochem, D-44780 Bochum, Germany
关键词
D O I
10.1093/embo-reports/kve228
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Import of peroxisomal matrix proteins is essential for peroxisome biogenesis. Genetic and biochemical studies using a variety of different model systems have led to the discovery of 23 PEX genes required for this process. Although it is generally believed that, in contrast to mitochondria and chloroplasts, translocation of proteins into peroxisomes involves a receptor cycle, there are reported differences of an evolutionary conservation of this cycle either with respect to the components or the steps involved in different organisms. We show here that the early steps of protein import into peroxisomes exhibit a greater similarity than was thought previously to be the case. Pex20p of Yarrowia lipolytica, Pex18p and Pex21p of Saccharomyces cerevisiae and mammalian Pex5pL fulfil a common function in the PTS2 pathway of their respective organisms. These non-orthologous proteins possess a conserved sequence region that most likely represents a common PTS2-receptor binding site and di-aromatic pentapeptide motifs that could be involved in binding of the putative docking proteins. We propose that not necessarily the same proteins but functional modules of them are conserved in the early steps of peroxisomal protein import.
引用
收藏
页码:1035 / 1039
页数:5
相关论文
共 30 条
[1]   Pex14p, a peroxisomal membrane protein binding both receptors of the two PTS-dependent import pathways [J].
Albertini, M ;
Rehling, P ;
Erdmann, R ;
Girzalsky, W ;
Kiel, JAKW ;
Veenhuis, M ;
Kunau, WH .
CELL, 1997, 89 (01) :83-92
[2]   Saccharomyces cerevisiae PTS1 receptor Pex5p interacts with the SH3 domain of the peroxisomal membrane protein Pex13p in an unconventional, non-PXXP-related manner [J].
Bottger, G ;
Barnett, P ;
Klein, ATJ ;
Kragt, A ;
Tabak, HF ;
Distel, B .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (11) :3963-3976
[3]   An isoform of Pex5p, the human PTS1 receptor, is required for the import of PTS2 proteins into peroxisomes [J].
Braverman, N ;
Dodt, G ;
Gould, SJ ;
Valle, D .
HUMAN MOLECULAR GENETICS, 1998, 7 (08) :1195-1205
[4]   Pex14p is a member of the protein linkage map of Pex5p [J].
Brocard, C ;
Lametschwandtner, G ;
Koudelka, R ;
Hartig, A .
EMBO JOURNAL, 1997, 16 (18) :5491-5500
[5]   PROTEIN-INTERACTION CLONING IN YEAST - IDENTIFICATION OF MAMMALIAN PROTEINS THAT REACT WITH THE LEUCINE ZIPPER OF JUN [J].
CHEVRAY, PM ;
NATHANS, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (13) :5789-5793
[6]   The human peroxisomal targeting signal receptor, Pex5p, is translocated into the peroxisomal matrix and recycled to the cytosol [J].
Dammai, V ;
Subramani, S .
CELL, 2001, 105 (02) :187-196
[7]   Multiple PEX genes are required for proper subcellular distribution and stability of Pex5p, the PTS1 receptor: Evidence that PTS1 protein import is mediated by a cycling receptor [J].
Dodt, G ;
Gould, SJ .
JOURNAL OF CELL BIOLOGY, 1996, 135 (06) :1763-1774
[8]   MUTATIONS IN THE PTS1 RECEPTOR GENE, PXR1, DEFINE COMPLEMENTATION GROUP-2 OF THE PEROXISOME BIOGENESIS DISORDERS [J].
DODT, G ;
BRAVERMAN, N ;
WONG, C ;
MOSER, A ;
MOSER, HW ;
WATKINS, P ;
VALLE, D ;
GOULD, SJ .
NATURE GENETICS, 1995, 9 (02) :115-125
[9]  
DODT G, 2001, IN PRESS J BIOL CHEM
[10]   The SH3 domain of the Saccharomyces cerevisiae peroxisomal membrane protein Pex13p functions as a docking site for Pex5p, a mobile receptor for the import of PTS1-containing proteins [J].
Elgersma, Y ;
Kwast, L ;
Klein, A ;
VoornBrouwer, T ;
vandenBerg, M ;
Metzig, B ;
America, T ;
Tabak, HF ;
Distel, B .
JOURNAL OF CELL BIOLOGY, 1996, 135 (01) :97-109