Many-body density matrices for free fermions

被引:128
作者
Cheong, SA [1 ]
Henley, CL [1 ]
机构
[1] Cornell Univ, Atom & Solid State Phys Lab, Ithaca, NY 14853 USA
来源
PHYSICAL REVIEW B | 2004年 / 69卷 / 07期
关键词
D O I
10.1103/PhysRevB.69.075111
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Building upon an analytical technique introduced by Chung and Peschel [Phys. Rev. B 64, 064412 (2001)], we calculated the many-body density matrix rho(B) of a finite block of B sites within an infinite system of free spinless fermions in arbitrary dimensions. In terms of the block Green function matrix G (whose elements are G((i) over barj)=<c(i)(dagger)c(j)>, where c(i)(dagger) and c(j) are fermion creation and annihilation operators acting on sites i and j within the block, respectively), the density matrix can be written as rho(B)=det(1-G)exp(Sigma(ij)[ln G(1-G)(-1)](ij)c(i)(dagger)c(j)). Our results suggest that Hilbert space truncation schemes should retain the states created by a subset of the c(i)(dagger)'s (in any combination), rather than selecting eigenvectors of rho(B) independently based on the eigenvalue.
引用
收藏
页数:12
相关论文
共 19 条
[1]  
BALLENTINE LE, 1908, QUANTUM MECH MODERN
[2]  
BURKHARDT TW, 1982, REAL SPACE RENORMALI
[3]   Density-matrix renormalization-group algorithm for quantum lattice systems with a large number of states per site [J].
Bursill, RJ .
PHYSICAL REVIEW B, 1999, 60 (03) :1643-1649
[4]   Operator-based truncation scheme based on the many-body fermion density matrix [J].
Cheong, SA ;
Henley, CL .
PHYSICAL REVIEW B, 2004, 69 (07)
[5]   REAL-SPACE RENORMALIZATION FOR HEISENBERG MODELS ON 2-DIMENSIONAL LATTICES [J].
CHERANOVSKI, VO ;
SCHMALZ, TG ;
KLEIN, DJ .
JOURNAL OF CHEMICAL PHYSICS, 1994, 101 (07) :5841-5846
[6]   Density-matrix spectra of solvable fermionic systems [J].
Chung, MC ;
Peschel, I .
PHYSICAL REVIEW B, 2001, 64 (06)
[7]   A non-perturbative real-space renormalization group scheme [J].
Degenhard, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (35) :6173-6185
[8]  
Feynman R. P., 1972, Statistical Mechanics: A Set of Lectures
[9]   REAL-SPACE RENORMALIZATION-GROUP STUDIES OF LOW-DIMENSIONAL QUANTUM ANTIFERROMAGNETS [J].
LEPETIT, MB ;
MANOUSAKIS, E .
PHYSICAL REVIEW B, 1993, 48 (02) :1028-1035
[10]   Real-space renormalization group with effective interactions -: art. no. 085110 [J].
Malrieu, JP ;
Guihéry, N .
PHYSICAL REVIEW B, 2001, 63 (08)