In-situ synthetize multi-walled carbon nanotubes@MnO2 nanoflake core-shell structured materials for supercapacitors

被引:68
作者
Zheng, Huajun [1 ,2 ]
Wang, Jiaoxia [2 ]
Jia, Yi [3 ,4 ]
Ma, Chun'an [1 ,2 ]
机构
[1] Zhejiang Univ Technol, State Key Lab Breeding Base Green Chem Synth Tech, Hangzhou 310032, Zhejiang, Peoples R China
[2] Zhejiang Univ Technol, Dept Appl Chem, Hangzhou 310032, Zhejiang, Peoples R China
[3] Univ Queensland, Sch Engn, ARC Ctr Excellence Funct Nanomat, Brisbane, Qld 4072, Australia
[4] Univ Queensland, AIBN, Brisbane, Qld 4072, Australia
关键词
Supercapacitor; Manganese dioxide nanoflake; Carbon nanotube; Core-shell structure; MANGANESE OXIDE NANOSHEET; CHARGE STORAGE MECHANISM; ELECTROCHEMICAL PROPERTIES; HYDROTHERMAL SYNTHESIS; MNO2; NANOWIRES; PERFORMANCE; ELECTRODE; COMPOSITES; NANOTUBE; FILM;
D O I
10.1016/j.jpowsour.2012.06.047
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new type of core-shell structured material consisting of multi-walled carbon nanotubes (MWCNTs) and manganese dioxide (MnO2) nanoflake is synthesized using an in-situ co-precipitation method. By scanning electron microscopy and transition electron microscope, it is confirmed that the core-shell nanostructure is formed by the uniform incorporation of birnessite-type MnO2 nanoflake growth round the surface of the activated-MWCNTs. That core-shell structured material electrode presents excellent electrochemical capacitance properties with the specific capacitance reaching 380 F g(-1) at the current density of 5 A g(-1) in 0.5 M Na2SO4 electrolyte. In addition, the electrode also exhibits good performance (the power density: 11.28 kW kg(-1) at 5 A g(-1)) and long-term cycling stability (retaining 82.7% of its initial capacitance after 3500 cycles at 5 A g(-1)). It mainly attributes to MWCNTs not only providing considerable specific surface area for high mass loading of MnO2 nanoflakes to ensure effective utilization of MnO2 nanoflake, but also offering an electron pathway to improve electrical conductivity of the electrode materials. It is clearly indicated that such core-shell structured materials including MWCNTs and MnO2 nanoflake may find important applications for supercapacitors. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:508 / 514
页数:7
相关论文
共 36 条
[1]  
[Anonymous], 1999, ELECTROCHEMICAL SUPE
[2]   THE DETERMINATION OF PORE VOLUME AND AREA DISTRIBUTIONS IN POROUS SUBSTANCES .1. COMPUTATIONS FROM NITROGEN ISOTHERMS [J].
BARRETT, EP ;
JOYNER, LG ;
HALENDA, PP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1951, 73 (01) :373-380
[3]   Highly flexible supercapacitors with manganese oxide nanosheet/carbon cloth electrode [J].
Chen, Ying-Chu ;
Hsu, Yu-Kuei ;
Lin, Yan-Gu ;
Lin, Yu-Kai ;
Horng, Ying-Ying ;
Chen, Li-Chyong ;
Chen, Kuei-Hsien .
ELECTROCHIMICA ACTA, 2011, 56 (20) :7124-7130
[4]   Graphene and nanostructured MnO2 composite electrodes for supercapacitors [J].
Cheng, Qian ;
Tang, Jie ;
Ma, Jun ;
Zhang, Han ;
Shinya, Norio ;
Qin, Lu-Chang .
CARBON, 2011, 49 (09) :2917-2925
[5]   Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors [J].
Chmiola, John ;
Largeot, Celine ;
Taberna, Pierre-Louis ;
Simon, Patrice ;
Gogotsi, Yury .
SCIENCE, 2010, 328 (5977) :480-483
[6]   Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors [J].
Chou, Shu-Lei ;
Wang, Jia-Zhao ;
Chew, Sau-Yen ;
Liu, Hua-Kun ;
Dou, Shi-Xue .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (11) :1724-1727
[7]   High dispersion of γ-MnO2 on well-aligned carbon nanotube arrays and its application in supercapacitors [J].
Fan, Zhen ;
Chen, Jinhua ;
Zhang, Bing ;
Liu, Bo ;
Zhong, Xinxian ;
Kuang, Yafei .
DIAMOND AND RELATED MATERIALS, 2008, 17 (11) :1943-1948
[8]   Factors influencing MnO2/multi-walled carbon nanotubes composite's electrochemical performance as supercapacitor electrode [J].
Jiang, Rongrong ;
Huang, Tao ;
Tang, Yang ;
Liu, Jiali ;
Xue, Leigang ;
Zhuang, Jihua ;
Yu, Aishui .
ELECTROCHIMICA ACTA, 2009, 54 (27) :7173-7179
[9]   Synthesis of LixMnO2 by chemical lithiation in an aqueous media [J].
Jung, Won Il ;
Nagao, Miki ;
Pitteloud, Cedric ;
Yamada, Atsuo ;
Kanno, Ryoji .
JOURNAL OF POWER SOURCES, 2010, 195 (10) :3328-3332
[10]   MnO2 nanoflakes coated on multi-walled carbon nanotubes for rechargeable lithium-air batteries [J].
Li, Jiaxin ;
Wang, Ning ;
Zhao, Yi ;
Ding, Yunhai ;
Guan, Lunhui .
ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (07) :698-700