Gene regulation during cold acclimation in plants

被引:218
作者
Chinnusamy, V
Zhu, J [1 ]
Zhu, JK [1 ]
机构
[1] Univ Calif Riverside, Inst Integrat Genome Biol, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Dept Bot & Plant Sci, Riverside, CA 92521 USA
关键词
D O I
10.1111/j.1399-3054.2006.00596.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Cold acclimation involves precise signaling and regulation of the transcriptome. The plasma membrane may be the primary cold-stress sensor, and FRY1/HOS2 inositol polyphosphate 1-phosphatase regulates cytosolic inositol-1,4,5-triphosphate levels, which in turn control cytosolic Ca2+ signatures and cold acclimation. Cold-induced reactive oxygen species may activate a mitogen-activated protein kinase cascade (AtMEKK1-AtMKK2-AtMPK4/6) that regulates tolerance to freezing and other abiotic stresses. Cold acclimation induces the expression of the C-repeat binding transcription factors (CBF), which in turn activate many downstream genes that confer chilling and freezing tolerance to plants. The constitutively expressed myelocytomatosis-type basic helix-loop-helix transcription factor inducer of CBF expression 1 (ICE1) regulates the transcription of CBFs and other cold-induced regulons and freezing tolerance. ICE1 is probably negatively regulated by ubiquitination, which may be mediated by the HOS1 RING finger protein. The ICE1-CBF pathway positively regulates the expression of cysteine-2 and histidine-2 zinc finger transcriptional repressors, which are under the negative control of LOS2, a bi-functional enolase. In a CBF-independent pathway, the transcription factors HOS9 (a homeodomain type) and HOS10 (a R2R3 myeloblastosis type) play pivotal roles in the regulation of cold-responsive genes and freezing tolerance. The signaling process from sensors to transcription factors and to cellular responses needs further understanding. Also, cold-stress signaling in reproductive tissues is still largely unknown.
引用
收藏
页码:52 / 61
页数:10
相关论文
共 66 条
  • [1] The sfr6 mutant of Arabidopsis is defective in transcriptional activation via CBF/DREB1 and DREB2 and shows sensitivity to osmotic stress
    Boyce, JM
    Knight, H
    Deyholos, M
    Openshaw, MR
    Galbraith, DW
    Warren, G
    Knight, MR
    [J]. PLANT JOURNAL, 2003, 34 (04) : 395 - 406
  • [2] Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis
    Catalá, R
    Santos, E
    Alonso, JM
    Ecker, JR
    Martínez-Zapater, JM
    Salinas, J
    [J]. PLANT CELL, 2003, 15 (12) : 2940 - 2951
  • [3] CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis
    Cheong, YH
    Kim, KN
    Pandey, GK
    Gupta, R
    Grant, JJ
    Luan, S
    [J]. PLANT CELL, 2003, 15 (08) : 1833 - 1845
  • [4] Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants
    Chinnusamy, V
    Schumaker, K
    Zhu, JK
    [J]. JOURNAL OF EXPERIMENTAL BOTANY, 2004, 55 (395) : 225 - 236
  • [5] ICE1:: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis
    Chinnusamy, V
    Ohta, M
    Kanrar, S
    Lee, BH
    Hong, XH
    Agarwal, M
    Zhu, JK
    [J]. GENES & DEVELOPMENT, 2003, 17 (08) : 1043 - 1054
  • [6] Chinnusamy V., 2002, SCI STKE, V140, pPL10
  • [7] ABFs, a family of ABA-responsive element binding factors
    Choi, HI
    Hong, JH
    Ha, JO
    Kang, JY
    Kim, SY
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (03) : 1723 - 1730
  • [8] OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression
    Dubouzet, JG
    Sakuma, Y
    Ito, Y
    Kasuga, M
    Dubouzet, EG
    Miura, S
    Seki, M
    Shinozaki, K
    Yamaguchi-Shinozaki, K
    [J]. PLANT JOURNAL, 2003, 33 (04) : 751 - 763
  • [9] Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway
    Fowler, S
    Thomashow, MF
    [J]. PLANT CELL, 2002, 14 (08) : 1675 - 1690
  • [10] A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis
    Gong, ZZ
    Dong, CH
    Lee, H
    Zhu, JH
    Xiong, LM
    Gong, DM
    Stevenson, B
    Zhu, JK
    [J]. PLANT CELL, 2005, 17 (01) : 256 - 267