Identification of an intramolecular interaction between the SH3 and guanylate kinase domains of PSD-95

被引:120
作者
McGee, AW
Bredt, DS
机构
[1] Univ Calif San Francisco, Sch Med, Dept Physiol, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Sch Med, Neurosci Program, San Francisco, CA 94143 USA
关键词
D O I
10.1074/jbc.274.25.17431
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Postsynaptic density-95 (PSD-95/SAP-90) is a member of the membrane-associated guanylate kinase (MAGUK) family of proteins that assemble protein complexes at synapses and other cell junctions. MAGUKs comprise multiple protein-protein interaction motifs including PDZ, SH3 and guanylate kinase (GK) domains, and these binding sites mediate the scaffolding function of MAGUK proteins, Synaptic binding partners for the PDZ and GK domains of PSD-95 have been identified, but the role of the SH3 domain remains elusive. We now report that the SH3 domain of PSD-95 mediates a specific interaction with the GK domain. The GK domain lacks a poly-proline motif that typically binds to SH3 domains; instead, SH3/GK binding is a bi-domain interaction that requires both intact motifs. Although isolated SH3 and GK domains can bind in trans, experiments with intact PSD-95 molecules indicate that intramolecular SH3/GK binding dominates and prevents intermolecular associations. SH3/GK binding is conserved in the related Drosophila MAGUK protein DLG but is not detectable for Caenorhabditis elegans LIN-2. Many previously identified genetic mutations of MAGUKs in invertebrates occur in the SH3 or GK domains, and all of these mutations disrupt intramolecular SH3/GK binding.
引用
收藏
页码:17431 / 17436
页数:6
相关论文
共 23 条
[1]   Regulatory intramolecular association in a tyrosine kinase of the Tec family [J].
Andreotti, AH ;
Bunnell, SC ;
Feng, S ;
Berg, LJ ;
Schreiber, SL .
NATURE, 1997, 385 (6611) :93-97
[2]   Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha 1-syntrophin mediated by PDZ domains [J].
Brenman, JE ;
Chao, DS ;
Gee, SH ;
McGee, AW ;
Craven, SE ;
Santillano, DR ;
Wu, ZQ ;
Huang, F ;
Xia, HH ;
Peters, MF ;
Froehner, SC ;
Bredt, DS .
CELL, 1996, 84 (05) :757-767
[3]  
Brenman JE, 1998, J NEUROSCI, V18, P8805
[4]   NITRIC-OXIDE SYNTHASE COMPLEXED WITH DYSTROPHIN AND ABSENT FROM SKELETAL-MUSCLE SARCOLEMMA IN DUCHENNE MUSCULAR-DYSTROPHY [J].
BRENMAN, JE ;
CHAO, DS ;
XIA, HH ;
ALDAPE, K ;
BREDT, DS .
CELL, 1995, 82 (05) :743-752
[5]   THE RAT-BRAIN POSTSYNAPTIC DENSITY FRACTION CONTAINS A HOMOLOG OF THE DROSOPHILA DISKS-LARGE TUMOR SUPPRESSOR PROTEIN [J].
CHO, KO ;
HUNT, CA ;
KENNEDY, MB .
NEURON, 1992, 9 (05) :929-942
[6]   PDZ proteins organize synaptic signaling pathways [J].
Craven, SE ;
Bredt, DS .
CELL, 1998, 93 (04) :495-498
[7]  
Hoskins R, 1996, DEVELOPMENT, V122, P97
[8]   Organizing a functional junctional complex requires specific domains of the Drosophila MAGUK Discs large [J].
Hough, CD ;
Woods, DF ;
Park, S ;
Bryant, PJ .
GENES & DEVELOPMENT, 1997, 11 (23) :3242-3253
[9]   GKAP, a novel synaptic protein that interacts with the guanylate kinase-like domain of the PSD-95/SAP90 family of channel clustering molecules [J].
Kim, E ;
Naisbitt, S ;
Hsueh, YP ;
Rao, A ;
Rothschild, A ;
Craig, AM ;
Sheng, M .
JOURNAL OF CELL BIOLOGY, 1997, 136 (03) :669-678
[10]  
KISTNER U, 1993, J BIOL CHEM, V268, P4580