Nitrogen-Doped Carbon Nanotube Arrays for High-Efficiency Electrochemical Reduction of CO2: On the Understanding of Defects, Defect Density, and Selectivity

被引:416
作者
Sharma, Pranav P. [1 ]
Wu, Jingjie [2 ]
Yadav, Ram Manohar [2 ]
Liu, Mingjie [2 ]
Wright, Christopher J. [1 ]
Tiwary, Chandra Sekhar [2 ]
Yakobson, Boris I. [2 ]
Lou, Jun [2 ]
Ajayan, Pulickel M. [2 ]
Zhou, Xiao-Dong [1 ]
机构
[1] Univ S Carolina, Dept Chem Engn, Columbia, SC 29208 USA
[2] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
carbon dioxide fixation; carbon nanotubes; carbon monoxide selectivity; electrochemistry; nitrogen defects; HIGH ELECTROCATALYTIC ACTIVITY; METAL-FREE ELECTROCATALYSTS; OXYGEN REDUCTION; SN ELECTRODE; CATALYSTS; DIOXIDE; NANOPARTICLES; PERFORMANCE; KINETICS; CELLS;
D O I
10.1002/anie.201506062
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nitrogen-doped carbon nanotubes (NCNTs) have been considered as a promising electrocatalyst for carbon-dioxide-reduction reactions, but two fundamental chemistry questions remain obscure: 1)What are the active centers with respect to various defect species and 2)what is the role of defect density on the selectivity of NCNTs? The aim of this work is to address these questions. The catalytic activity of NCNTs depends on the structural nature of nitrogen in CNTs and defect density. Comparing with pristine CNTs, the presence of graphitic and pyridinic nitrogen significantly decreases the overpotential (ca. -0.18V) and increases the selectivity (ca. 80%) towards the formation of CO. The experimental results are in congruent with DFT calculations, which show that pyridinic defects retain a lone pair of electrons that are capable of binding CO2. However, for graphitic-like nitrogen, electrons are located in the * antibonding orbital, making them less accessible for CO2 binding.
引用
收藏
页码:13701 / 13705
页数:5
相关论文
共 39 条
[1]  
[Anonymous], 2010, ANGEW CHEM-GER EDIT
[2]   Influence of diameter in the Raman spectra of aligned multi-walled carbon nanotubes [J].
Antunes, E. F. ;
Lobo, A. O. ;
Corat, E. J. ;
Trava-Airoldi, V. J. .
CARBON, 2007, 45 (05) :913-921
[3]   Catalysis research of relevance to carbon management: Progress, challenges, and opportunities [J].
Arakawa, H ;
Aresta, M ;
Armor, JN ;
Barteau, MA ;
Beckman, EJ ;
Bell, AT ;
Bercaw, JE ;
Creutz, C ;
Dinjus, E ;
Dixon, DA ;
Domen, K ;
DuBois, DL ;
Eckert, J ;
Fujita, E ;
Gibson, DH ;
Goddard, WA ;
Goodman, DW ;
Keller, J ;
Kubas, GJ ;
Kung, HH ;
Lyons, JE ;
Manzer, LE ;
Marks, TJ ;
Morokuma, K ;
Nicholas, KM ;
Periana, R ;
Que, L ;
Rostrup-Nielson, J ;
Sachtler, WMH ;
Schmidt, LD ;
Sen, A ;
Somorjai, GA ;
Stair, PC ;
Stults, BR ;
Tumas, W .
CHEMICAL REVIEWS, 2001, 101 (04) :953-996
[4]  
Augustynski J, 1998, STUD SURF SCI CATAL, V114, P107
[5]   How does α-FePc catalysts dispersed onto high specific surface carbon support work towards oxygen reduction reaction (orr)? [J].
Baranton, S. ;
Coutanceau, C. ;
Garnier, E. ;
Leger, J. -M. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2006, 590 (01) :100-110
[6]   Kinetics of oxygen reduction at RuO2-coated titanium electrode in alkaline solution [J].
Chang, CC ;
Wen, TC .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1997, 27 (03) :355-363
[7]   Highly Active Nitrogen-Doped Carbon Nanotubes for Oxygen Reduction Reaction in Fuel Cell Applications [J].
Chen, Zhu ;
Higgins, Drew ;
Tao, Haisheng ;
Hsu, Ryan S. ;
Chen, Zhongwei .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (49) :21008-21013
[8]   Toward N-Doped Graphene via Solvothermal Synthesis [J].
Deng, Dehui ;
Pan, Xiulian ;
Yu, Liang ;
Cui, Yi ;
Jiang, Yeping ;
Qi, Jing ;
Li, Wei-Xue ;
Fu, Qiang ;
Ma, Xucun ;
Xue, Qikun ;
Sun, Gongquan ;
Bao, Xinhe .
CHEMISTRY OF MATERIALS, 2011, 23 (05) :1188-1193
[9]  
Friedlingstein P, 2014, NAT GEOSCI, V7, P709, DOI [10.1038/NGEO2248, 10.1038/ngeo2248]
[10]   Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction [J].
Gong, Kuanping ;
Du, Feng ;
Xia, Zhenhai ;
Durstock, Michael ;
Dai, Liming .
SCIENCE, 2009, 323 (5915) :760-764