Nutrient sensing and signalling in plants: Potassium and phosphorus

被引:127
作者
Amtmann, A [1 ]
Hammond, JP
Armengaud, P
White, PJ
机构
[1] Univ Glasgow, Inst Biomed & Life Sci, Plant Sci Grp, Glasgow G12 8QQ, Lanark, Scotland
[2] Univ Warwick, Hort Res Int, Warwick CV35 9EF, England
来源
ADVANCES IN BOTANICAL RESEARCH, VOL 43: INCORPORATING ADVANCES IN PLANT PATHOLOGY | 2006年 / 43卷
关键词
D O I
10.1016/S0065-2296(05)43005-0
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Potassium and phosphorus are important macronutrients for crops but are often deficient in the field. Very little is known about how plants sense fluctuations in K and P and how information about K and P availability is integrated at the whole plant level into physiological and metabolic adaptations. This chapter reviews recent advances in discovering molecular responses of plants to K and P deficiency by microarray experiments. These studies provide us not only with a comprehensive picture of adaptive mechanisms, but also with a large number of transcriptional markers that can be used to identify upstream components of K and P signalling pathways. On the basis of the available information we discuss putative receptors and signals involved in the sensing and integration of K and P status both at the cellular and at the whole plant level. These involve membrane potential, voltage-dependent ion channels, intracellular Ca and pH, and transcription factors, as well as hormones and metabolites for systemic signalling. Genetic screens of reporter lines for transcriptional markers and metabolome analysis of K- and P-deficient plants are likely to further advance our knowledge in this area in the near future.
引用
收藏
页码:209 / 257
页数:49
相关论文
共 206 条
[1]  
ADALSTEINSSON S, 1994, J PLANT PHYSIOL, V143, P681, DOI 10.1016/S0176-1617(11)81157-0
[2]   Expression of KT/KUP genes in arabidopsis and the role of root hairs in K+ uptake [J].
Ahn, SJ ;
Shin, R ;
Schachtman, DP .
PLANT PHYSIOLOGY, 2004, 134 (03) :1135-1145
[3]   Temporal responses of Arabidopsis root architecture to phosphate starvation:: evidence for the involvement of auxin signalling [J].
Al-Ghazi, Y ;
Muller, B ;
Pinloche, S ;
Tranbarger, TJ ;
Nacry, P ;
Rossignol, M ;
Tardieu, F ;
Doumas, P .
PLANT CELL AND ENVIRONMENT, 2003, 26 (07) :1053-1066
[4]   Vacuolar ion channels of higher plants [J].
Allen, GJ ;
Sanders, D .
ADVANCES IN BOTANICAL RESEARCH INCORPORATING ADVANCES IN PLANT PATHOLOGY, VOL 25: THE PLANT VACUOLE, 1997, 25 :217-252
[5]   Control of ionic currents in guard cell vacuoles by cytosolic and luminal calcium [J].
Allen, GJ ;
Sanders, D .
PLANT JOURNAL, 1996, 10 (06) :1055-1069
[6]   A defined range of guard cell calcium oscillation parameters encodes stomatal movements [J].
Allen, GJ ;
Chu, SP ;
Harrington, CL ;
Schumacher, K ;
Hoffman, T ;
Tang, YY ;
Grill, E ;
Schroeder, JI .
NATURE, 2001, 411 (6841) :1053-1057
[7]  
ALTMAN A, 1993, PHYSIOL PLANTARUM, V89, P653, DOI 10.1111/j.1399-3054.1993.tb05229.x
[8]   K+-Selective inward-rectifying channels and apoplastic pH in barley roots [J].
Amtmann, A ;
Jelitto, TC ;
Sanders, D .
PLANT PHYSIOLOGY, 1999, 120 (01) :331-338
[9]  
Amtmann A, 2004, ANNU PLANT REV, V15, P293
[10]   Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol [J].
Andersson, MX ;
Stridh, MH ;
Larsson, KE ;
Lijenberg, C ;
Sandelius, AS .
FEBS LETTERS, 2003, 537 (1-3) :128-132