Convective/absolute instability in miscible core-annular flow. Part 2. Numerical simulations and nonlinear global modes

被引:48
作者
Selvam, B. [1 ]
Talon, L. [2 ,3 ]
Lesshafft, L. [1 ]
Meiburg, E. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
[2] Univ Paris 06, FAST, F-91405 Orsay, France
[3] Univ Paris 11, CNRS, UMR 7608, F-91405 Orsay, France
基金
美国国家科学基金会;
关键词
DENSITY STRATIFICATION; VARIABLE VISCOSITY; PATTERN SELECTION; CAPILLARY TUBES; VISCOUS-FLUID; STABILITY; DISPLACEMENTS; DYNAMICS; ABSOLUTE; STATES;
D O I
10.1017/S0022112008004242
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The convective/absolute nature of the instability of miscible core-annular flow with variable viscosity is investigated via linear stability analysis and nonlinear simulations. From linear analysis, it is found that miscible core-annular flows with the more viscous fluid in the core are at most convectively unstable, On the other hand, flows with the less viscous fluid in the core exhibit absolute instability at high viscosity ratios, over a limited range of core radii. Nonlinear direct numerical simulations in a semi-infinite domain display self-excited intrinsic oscillations if and only if the underlying base flow exhibits absolute instability. This oscillator-type flow behaviour is demonstrated to be associated with the presence of a nonlinear global mode. Both the parameter range of global instability and the intrinsically selected frequency of nonlinear oscillations, as observed in the simulation, are accurately predicted from linear criteria. In convectively unstable situations, the flow is shown to respond to external forcing over an unstable range of frequencies, in quantitative agreement with linear theory. As discussed in part 1 of this study (d'Olce, Martin, Rakotomalala, Salin and Talon, J. Fluid Mech., vol. 618, 2008, pp. 305-322), self-excited synchronized oscillations were also observed experimentally. An interpretation of these experiments is attempted on the basis of the numerical results presented here.
引用
收藏
页码:323 / 348
页数:26
相关论文
共 58 条
[1]   LUBRICATED PIPELINING - STABILITY OF CORE ANNULAR-FLOW .5. EXPERIMENTS AND COMPARISON WITH THEORY [J].
BAI, RY ;
CHEN, KP ;
JOSEPH, DD .
JOURNAL OF FLUID MECHANICS, 1992, 240 :97-132
[2]   Instability of miscible interfaces in a cylindrical tube [J].
Balasubramaniam, R ;
Rashidnia, N ;
Maxworthy, T ;
Kuang, J .
PHYSICS OF FLUIDS, 2005, 17 (05) :1-11
[3]  
BOOMKAMP PAM, 1992, PHYS FLUIDS, V240, P97
[4]  
Briggs R.J., 1964, Electron-Stream Interaction with Plasmas
[5]   Pattern selection in the absolutely unstable regime as a nonlinear eigenvalue problem: Taylor vortices in axial flow [J].
Buchel, P ;
Lucke, M ;
Roth, D ;
Schmitz, R .
PHYSICAL REVIEW E, 1996, 53 (05) :4764-4777
[6]  
BUELL JC, 1988, CTRS88, P19
[7]   Miscible displacements in capillary tubes .2. Numerical simulations [J].
Chen, CY ;
Meiburg, E .
JOURNAL OF FLUID MECHANICS, 1996, 326 :57-90
[8]   LUBRICATED PIPELINING .3. STABILITY OF CORE ANNULAR-FLOW IN VERTICAL PIPES [J].
CHEN, K ;
BAI, RY ;
JOSEPH, DD .
JOURNAL OF FLUID MECHANICS, 1990, 214 :251-286
[9]   Global instabilities in spatially developing flows: Non-normality and nonlinearity [J].
Chomaz, JM .
ANNUAL REVIEW OF FLUID MECHANICS, 2005, 37 (37) :357-392
[10]  
CHOMAZ JM, 1991, STUD APPL MATH, V84, P119