Regulation of protein S-thiolation by glutaredoxin 5 in the yeast Saccharomyces cerevisiae

被引:79
作者
Shenton, D
Perrone, G
Quinn, KA
Dawes, IW
Grant, CM
机构
[1] UMIST, Dept Biomol Sci, Manchester M60 1QD, Lancs, England
[2] Univ New S Wales, Sch Biochem & Mol Genet, Sydney, NSW 2052, Australia
关键词
D O I
10.1074/jbc.M200559200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The irreversible oxidation of cysteine residues can be prevented by protein S-thiolation, a process by which protein -SH groups form mixed disulfides with low molecular weight thiols such as glutathione. We report here that this protein modification is not a simple response to the cellular redox state, since different oxidants lead to different patterns of protein S-thiolation. SDS-polyacrylamide gel electrophoresis shows that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is the major target for modification following treatment with hydroperoxides (hydrogen peroxide or tert-butylhydroperoxide), whereas this enzyme is unaffected following cellular exposure to the thiol oxidant diamide. Further evidence that protein S-thiolation is tightly regulated in response to oxidative stress is provided by the finding that the Tdh3 GAPDH isoenzyme, and not the Tdh2 isoenzyme, is S-thiolated following exposure to H2O2 in vivo, whereas both GAPDH isoenzymes are S-thiolated when H2O2 is added to cell-free extracts. This indicates that cellular factors are likely to be responsible for the difference in GAPDH S-thiolation observed in vivo rather than intrinsic structural differences between the GAPDH isoenzymes. To begin to search for factors that can regulate the S-thiolation process, we investigated the role of the glutaredoxin family of oxidoreductases. We provide the first evidence that protein dethiolation in vivo is regulated by a monothiol-glutaredoxin rather than the classical glutaredoxins, which contain two active site cysteine residues. In particular, glutaredoxin 5 is required for efficient dethiolation of the Tdh3 GAPDH isoenzyme.
引用
收藏
页码:16853 / 16859
页数:7
相关论文
共 30 条
[1]   STRUCTURAL AND FUNCTIONAL-CHARACTERIZATION OF THE MUTANT ESCHERICHIA-COLI GLUTAREDOXIN(C14-]S) AND ITS MIXED DISULFIDE WITH GLUTATHIONE [J].
BUSHWELLER, JH ;
ASLUND, F ;
WUTHRICH, K ;
HOLMGREN, A .
BIOCHEMISTRY, 1992, 31 (38) :9288-9293
[2]   Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress [J].
Carmel-Harel, O ;
Storz, G .
ANNUAL REVIEW OF MICROBIOLOGY, 2000, 54 :439-461
[3]   Acute cadmium exposure inactivates thioltransferase (glutaredoxin), inhibits intracellular reduction of protein-glutathionyl-mixed disulfides, and initiates apoptosis [J].
Chrestensen, CA ;
Starke, DW ;
Mieyal, JJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (34) :26556-26565
[4]   PROTEIN SULFHYDRYLS ARE PROTECTED FROM IRREVERSIBLE OXIDATION BY CONVERSION TO MIXED DISULFIDES [J].
COAN, C ;
JI, JY ;
HIDEG, K ;
MEHLHORN, RJ .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1992, 295 (02) :369-378
[5]   Recent trends in glutathione biochemistry - Glutathione-protein interactions: A molecular link between oxidative stress and cell proliferation? [J].
Cotgreave, IA ;
Gerdes, RG .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998, 242 (01) :1-9
[6]   Thioltransferase (glutaredoxin) is detected-within HIV-1 and can regulate the activity of glutathionylated HIV-1 protease in vitro [J].
Davis, DA ;
Newcomb, FM ;
Starke, DW ;
Ott, DE ;
Mieyal, JJ ;
Yarchoan, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (41) :25935-25940
[7]   Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions [J].
Grant, CM .
MOLECULAR MICROBIOLOGY, 2001, 39 (03) :533-541
[8]  
Grant CM, 1999, MOL CELL BIOL, V19, P2650
[9]   Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae [J].
Grant, CM ;
Perrone, G ;
Dawes, IW .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998, 253 (03) :893-898
[10]   Stationary-phase induction of GLR1 expression is mediated by the yAP-1 transcriptional regulatory protein in the yeast Saccharomyces cerevisiae [J].
Grant, CM ;
MacIver, FH ;
Dawes, IW .
MOLECULAR MICROBIOLOGY, 1996, 22 (04) :739-746