Heat capacity and compactness of denatured proteins

被引:25
作者
Lazaridis, T
Karplus, M
机构
[1] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[2] Univ Strasbourg, ISIS, Lab Chim Biophys, F-67000 Strasbourg, France
关键词
protein thermodynamics; solvent effects; non-bonded interactions; stability of proteins;
D O I
10.1016/S0301-4622(99)00022-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
One of the striking results of protein thermodynamics is that the heat capacity change upon denaturation is large and positive. This change is generally ascribed to the exposure of non-polar groups to water on denaturation, in analogy to the large heat capacity change for the transfer of small non-polar molecules from hydrocarbons to water. Calculations of the heat capacity based on the exposed surface area of the completely unfolded denatured state give good agreement with experimental data. This result is difficult to reconcile with evidence that the heat denatured state in the absence of denaturants is reasonably compact. In this work, sample conformations for the denatured state of truncated CI2 are obtained by use of an effective energy function for proteins in solution. The energy function gives denatured conformations that are compact with radii of gyration that are slightly larger than that of the native state. The model is used to estimate the heat capacity, as well as that of the native state, at 300 and 350 K via finite enthalpy differences. The calculations show that the heat capacity of denaturation can have large positive contributions from non-covalent intraprotein interactions because these interactions change more with temperature in non-native conformations than in the native state. Including this contribution, which has been neglected in empirical surface area models, leads to heat capacities of unfolding for compact denatured states that are consistent with the experimental heat capacity data. Estimates of the stability curve of CI2 made with the effective energy function support the present model. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:207 / 217
页数:11
相关论文
共 49 条
[2]   The topology of multidimensional potential energy surfaces: Theory and application to peptide structure and kinetics [J].
Becker, OM ;
Karplus, M .
JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (04) :1495-1517
[3]   STANDARD THERMODYNAMICS OF TRANSFER - USES AND MISUSES [J].
BENNAIM, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1978, 82 (07) :792-803
[4]   Characterization of residual structure in the thermally denatured state of barnase by simulation and experiment: Description of the folding pathway [J].
Bond, CJ ;
Wong, KB ;
Clarke, J ;
Fersht, AR ;
Daggett, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (25) :13409-13413
[6]   HARMONIC DYNAMICS OF PROTEINS - NORMAL-MODES AND FLUCTUATIONS IN BOVINE PANCREATIC TRYPSIN-INHIBITOR [J].
BROOKS, B ;
KARPLUS, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1983, 80 (21) :6571-6575
[7]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[8]   CONFIGURATIONAL DISTRIBUTION OF DENATURED PHOSPHOGLYCERATE KINASE [J].
CALMETTES, P ;
ROUX, B ;
DURAND, D ;
DESMADRIL, M ;
SMITH, JC .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 231 (03) :840-848
[9]   THE HEAT-CAPACITY OF PROTEINS [J].
GOMEZ, J ;
HILSER, VJ ;
XIE, D ;
FREIRE, E .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1995, 22 (04) :404-412
[10]   COLLECTIVE MOTIONS IN PROTEINS - A COVARIANCE ANALYSIS OF ATOMIC FLUCTUATIONS IN MOLECULAR-DYNAMICS AND NORMAL MODE SIMULATIONS [J].
ICHIYE, T ;
KARPLUS, M .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1991, 11 (03) :205-217