On the solution of linear differential equations in Lie groups

被引:228
作者
Iserles, A
Norsett, SP
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 9EW, England
[2] Norwegian Univ Sci & Technol, Inst Math Sci, N-7034 Trondheim, Norway
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 1999年 / 357卷 / 1754期
关键词
Lie groups; differential equation; rooted trees; quadrature;
D O I
10.1098/rsta.1999.0362
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The subject matter of this paper is the solution of the linear differential equation y' = a(t)y, y(0) = y(o), where y(o) is an element of G, a(.) : R+ --> g and g is a Lie algebra of the Lie group G. By building upon an earlier work of Wilhelm Magnus, we represent the solution as an infinite series whose terms are indexed by binary trees. This relationship between the infinite series and binary trees leads both to a convergence proof and to a constructive computational algorithm. This numerical method requires the evaluation of a large number of multivariate integrals, but this can be accomplished in a tractable manner by using quadrature schemes in a novel manner and by exploiting the structure of the Lie algebra.
引用
收藏
页码:983 / 1019
页数:37
相关论文
共 30 条
[1]  
Abramowitz M., 1965, HDB MATH FUNCTIONS
[2]  
[Anonymous], FDN COMPUTATIONAL MA
[3]  
Bellman R., 1969, Stability Theory of Differential Equations
[4]   VOLTERRA SERIES AND GEOMETRIC CONTROL-THEORY [J].
BROCKETT, RW .
AUTOMATICA, 1976, 12 (02) :167-176
[5]  
CALVO MP, 1996, NUMERICAL ANAL AR MI, P57
[6]  
CASAS F, 1996, SOLUTION LINEAR PART
[8]  
Comtet L., 1970, Analyse Combinatoire, VVolume 1
[9]  
Cools R., 1997, Acta Numerica, V6, P1, DOI 10.1017/S0962492900002701
[10]   NUMERICAL-INTEGRATION OF ORDINARY DIFFERENTIAL-EQUATIONS ON MANIFOLDS [J].
CROUCH, PE ;
GROSSMAN, R .
JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (01) :1-33