Self-organized TiO2 nanotubes with controlled dimensions by anodic oxidation

被引:36
作者
Elsanousi, Ammar [1 ]
Zhang, Jun [1 ]
Fadlalla, H. M. H. [1 ]
Zhang, Feng [1 ]
Wang, Hui [1 ]
Ding, Xiaoxia [1 ]
Huang, Zhixin [1 ]
Tang, Chengcun [1 ]
机构
[1] Cent China Normal Univ, Coll Phys Sci & Technol, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1007/s10853-008-2947-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effect of ammonium fluoride (NH4F) concentration on the dimensions (length, diameter, and wall thickness) of the self-organized nanotube arrays has been investigated. Results show that varying the concentration of NH4F exerts a strong effect on changing the dimensions of the as-grown nanotube arrays. The length of the nanotube arrays increases gradually by increasing the concentration up to a maximum length at a concentration of 1.00 wt%, after which the length decreases slightly with the increase in NH4F concentration. It was also observed that the diameter and wall thickness of the nanotube arrays vary with the change in concentration of NH4F, where the diameter was found to alter between 80 and 140 nm, and the wall thickness decreases by increasing the NH4F concentration. These results indicate that it is possible to entirely control the dimensions of the nanotube arrays, by tailoring the concentration of NH4F besides the anodization time and voltage.
引用
收藏
页码:7219 / 7224
页数:6
相关论文
共 31 条
[1]   Formation of titania nanotubes and applications for dye-sensitized solar cells [J].
Adachi, M ;
Murata, Y ;
Okada, I ;
Yoshikawa, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (08) :G488-G493
[2]   Formation of titania nanotubes with high photo-catalytic activity [J].
Adachi, M ;
Murata, Y ;
Harada, M ;
Yoshikawa, S .
CHEMISTRY LETTERS, 2000, (08) :942-943
[3]   TiO2 nanotubes:: Tailoring the geometry in H3PO4/HF electrolytes [J].
Bauer, Sebastian ;
Kleber, Sebastian ;
Schmuki, Patrik .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (08) :1321-1325
[4]   The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation [J].
Cai, QY ;
Paulose, M ;
Varghese, OK ;
Grimes, CA .
JOURNAL OF MATERIALS RESEARCH, 2005, 20 (01) :230-236
[5]   Highly porous (TiO2-SiO2-TeO2)/Al2O3/TiO2 composite nanostructures on glass with enhanced photocatalysis fabricated by anodization and sol-gel process [J].
Chu, SZ ;
Inoue, S ;
Wada, K ;
Li, D ;
Haneda, H ;
Awatsu, S .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (27) :6586-6589
[6]   Titanium oxide nanotubes prepared in phosphate electrolytes [J].
Ghicov, A ;
Tsuchiya, H ;
Macak, JM ;
Schmuki, P .
ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (05) :505-509
[7]   Titanium oxide nanotube arrays prepared by anodic oxidation [J].
Gong, D ;
Grimes, CA ;
Varghese, OK ;
Hu, WC ;
Singh, RS ;
Chen, Z ;
Dickey, EC .
JOURNAL OF MATERIALS RESEARCH, 2001, 16 (12) :3331-3334
[8]   Antibody-based bio-nanotube membranes for enantiomeric drug separations [J].
Lee, SB ;
Mitchell, DT ;
Trofin, L ;
Nevanen, TK ;
Söderlund, H ;
Martin, CR .
SCIENCE, 2002, 296 (5576) :2198-2200
[9]   Influence of different fluoride containing electrolytes on the formation of self-organized titania nanotubes by Ti anodization [J].
Macak, J ;
Taveira, LV ;
Tsuchiya, H ;
Sirotna, K ;
Macak, J ;
Schmuki, P .
JOURNAL OF ELECTROCERAMICS, 2006, 16 (01) :29-34
[10]   TiO2 nanotubes:: Self-organized electrochemical formation, properties and applications [J].
Macak, J. M. ;
Tsuchiya, H. ;
Ghicov, A. ;
Yasuda, K. ;
Hahn, R. ;
Bauer, S. ;
Schmuki, P. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2007, 11 (1-2) :3-18