Rotary Triboelectric Nanogenerator Based on a Hybridized Mechanism for Harvesting Wind Energy

被引:352
作者
Xie, Yannan [1 ,2 ]
Wang, Sihong [1 ]
Lin, Long [1 ]
Jing, Qingshen [1 ]
Lin, Zong-Hong [1 ]
Niu, Simiao [1 ]
Wu, Zhengyun [2 ]
Wang, Zhong Lin [1 ,3 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Xiamen Univ, Dept Phys, Xiamen 361005, Fujian, Peoples R China
[3] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing, Peoples R China
关键词
mechanical energy harvesting; triboelectric nanogenerators; wind power; self-powered sensors; CONTACT ELECTRIFICATION; PIEZOELECTRIC WINDMILL; CHARGE; DRIVEN; SEPARATION; CRYSTALS;
D O I
10.1021/nn402477h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Harvesting mechanical energy is becoming increasingly important for its availability and abundance in our living environment. Triboelectric nanogenerator (TENG) is a simple, cost-effective, and highly efficient approach for generating electricity from mechanical energies in a wide range of forms. Here, we developed a TENG designed for harvesting tiny-scale wind energy available in our normal living environment using conventional materials. The energy harvester is based on a rotary driven mechanical deformation of multiple plate-based TENGs. The operation mechanism is a hybridization of the contact-sliding-separation-contact processes by using the triboelectrification and electrostatic induction effects. With the introduction of polymer nanowires on surfaces, the rotary TENG delivers an open-circuit voltage of 250 V and a short-circuit current of 0.25 mA, corresponding to a maximum power density of similar to 39 W/m(2) at a wind speed of similar to 15 m/s, which is capable of directly driving hundreds of electronic devices such as commercial light-emitting diodes (LEDs), or rapidly charging capacitors. The rotary TENG was also applied as a self-powered sensor for measuring wind speed. This work represents a significant progress in the practical application of the TENG and its great potential in the future wind power technology. This technology can also be extended for harvesting energy from ocean current, making nanotechnology reaching our daily life a possibility in the near future.
引用
收藏
页码:7119 / 7125
页数:7
相关论文
共 31 条
[1]   Wind energy technology and current status:: a review [J].
Ackermann, T ;
Söder, L .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2000, 4 (04) :315-374
[2]  
[Anonymous], 2008, Ann. IRCP
[3]   The Mosaic of Surface Charge in Contact Electrification [J].
Baytekin, H. T. ;
Patashinski, A. Z. ;
Branicki, M. ;
Baytekin, B. ;
Soh, S. ;
Grzybowski, B. A. .
SCIENCE, 2011, 333 (6040) :308-312
[4]  
Bressers S, 2010, AM CERAM SOC BULL, V89, P34
[5]   A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties [J].
Diaz, AF ;
Felix-Navarro, RM .
JOURNAL OF ELECTROSTATICS, 2004, 62 (04) :277-290
[6]   Flexible triboelectric generator! [J].
Fan, Feng-Ru ;
Tian, Zhong-Qun ;
Wang, Zhong Lin .
NANO ENERGY, 2012, 1 (02) :328-334
[7]   Transparent Triboelectric Nanogenerators and Self-Powered Pressure Sensors Based on Micropatterned Plastic Films [J].
Fan, Feng-Ru ;
Lin, Long ;
Zhu, Guang ;
Wu, Wenzhuo ;
Zhang, Rui ;
Wang, Zhong Lin .
NANO LETTERS, 2012, 12 (06) :3109-3114
[8]   Controlled Growth of Aligned Polymer Nanowires [J].
Fang, Hao ;
Wu, Wenzhuo ;
Song, Jinhui ;
Wang, Zhong Lin .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (38) :16571-16574
[9]   Electrostatic self-assembly of macroscopic crystals using contact electrification [J].
Grzybowski, BA ;
Winkleman, A ;
Wiles, JA ;
Brumer, Y ;
Whitesides, GM .
NATURE MATERIALS, 2003, 2 (04) :241-245
[10]   A review of wind energy technologies [J].
Herbert, G. M. Joselin ;
Iniyan, S. ;
Sreevalsan, E. ;
Rajapandian, S. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2007, 11 (06) :1117-1145