Human tissue profiling with multidimensional protein identification technology

被引:58
作者
Cagney, G
Park, S
Chung, C
Tong, B
O'Dushlaine, C
Shields, DC
Emili, A
机构
[1] Univ Coll Dublin, Conway Inst, Dublin 4, Ireland
[2] Royal Coll Surgeons Ireland, Dublin 2, Ireland
[3] Univ Toronto, Banting & Best Dept Med Res, Toronto, ON M5G 1L6, Canada
[4] Univ Toronto, Program Proteom & Bioinformat, Toronto, ON M5G 1L6, Canada
关键词
proteomics; mass spectrometry; bioinformatics; tissue specificity;
D O I
10.1021/pr0500354
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Profiling of tissues and cell types through systematic characterization of expressed genes or proteins shows promise as a basic research tool, and has potential applications in disease diagnosis and classification. We used multidimensional protein identification protein identification technology (MudPIT) to analyze proteomes for enriched nuclear extracts of eight human tissues: brain, heart, liver, lung, muscle, pancreas, spleen, and testis. We show that the method is approximately 80% reproducible. We address issues of relative abundance, tissue-specificity, and selectivity, and the significance of proteins whose expression does not correlate with that of the corresponding mRNA. Surprisingly, most proteins are detected in a single tissue. These proteins tend to fulfill specialist (and potentially tissues-specific) functions compared to proteins expressed in two or more tissues.
引用
收藏
页码:1757 / 1767
页数:11
相关论文
共 46 条
[1]   Mass spectrometry-based proteomics [J].
Aebersold, R ;
Mann, M .
NATURE, 2003, 422 (6928) :198-207
[2]   A comparison of selected mRNA and protein abundances in human liver [J].
Anderson, L ;
Seilhamer, J .
ELECTROPHORESIS, 1997, 18 (3-4) :533-537
[3]   Analyzing yeast protein-protein interaction data obtained from different sources [J].
Bader, GD ;
Hogue, CWV .
NATURE BIOTECHNOLOGY, 2002, 20 (10) :991-997
[4]   The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000 [J].
Bairoch, A ;
Apweiler, R .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :45-48
[5]  
CAGNEY G, 2003, PROTEOME SCI, V1, P1
[6]   Selection for short introns in highly expressed genes [J].
Castillo-Davis, CI ;
Mekhedov, SL ;
Hartl, DL ;
Koonin, EV ;
Kondrashov, FA .
NATURE GENETICS, 2002, 31 (04) :415-418
[7]   Gene expression profiling:: monitoring transcription and translation products using DNA microarrays and proteomics [J].
Celis, JE ;
Kruhoffer, M ;
Gromova, I ;
Frederiksen, C ;
Ostergaard, M ;
Thykjaer, T ;
Gromov, P ;
Yu, JS ;
Pálsdóttir, H ;
Magnusson, N ;
Orntoft, TF .
FEBS LETTERS, 2000, 480 (01) :2-16
[8]   Discordant protein and mRNA expression in lung adenocarcinomas [J].
Chen, GA ;
Gharib, TG ;
Huang, CC ;
Taylor, JMG ;
Misek, DE ;
Kardia, SLR ;
Giordano, TJ ;
Iannettoni, MD ;
Orringer, MB ;
Hanash, SM ;
Beer, DG .
MOLECULAR & CELLULAR PROTEOMICS, 2002, 1 (04) :304-313
[9]   ACCURATE TRANSCRIPTION INITIATION BY RNA POLYMERASE-II IN A SOLUBLE EXTRACT FROM ISOLATED MAMMALIAN NUCLEI [J].
DIGNAM, JD ;
LEBOVITZ, RM ;
ROEDER, RG .
NUCLEIC ACIDS RESEARCH, 1983, 11 (05) :1475-1489
[10]   Global functional profiling of gene expression [J].
Draghici, S ;
Khatri, P ;
Martins, RP ;
Ostermeier, GC ;
Krawetz, SA .
GENOMICS, 2003, 81 (02) :98-104