Superdiffusion and out-of-equilibrium chaotic dynamics with many degrees of freedoms

被引:146
作者
Latora, V [1 ]
Rapisarda, A
Ruffo, S
机构
[1] MIT, Ctr Theoret Phys, Nucl Sci Lab, Cambridge, MA 02139 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
[3] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[4] Univ Catania, Dipartmento Fis, I-95129 Catania, Italy
[5] Ist Nazl Fis Nucl, Sez Catania Fis, I-95129 Catania, Italy
[6] Univ Florence, Dipartimento Energet, INFM, Florence, Italy
[7] Univ Florence, Dipartimento Energet, Ist Nazl Fis Nucl, Florence, Italy
关键词
D O I
10.1103/PhysRevLett.83.2104
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the link between relaxation to the equilibrium and anomalous superdiffusive motion in a classical N-body Hamiltonian system with long-range interaction showing a second-order phase transition in the canonical ensemble. Anomalous diffusion is observed only in a transient out-of-equilibrium regime and for a small range of energy, below the critical one. Superdiffusion is due to Levy walks of single particles and is checked independently through the second moment of the Diffusion becomes normal at distribution, power spectra, trapping, and walking time probabilities. equilibrium, after a relaxation time which diverges with N.
引用
收藏
页码:2104 / 2107
页数:4
相关论文
共 25 条
[1]   Breakdown of exponential sensitivity to initial conditions: Role of the range of interactions [J].
Anteneodo, C ;
Tsallis, C .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5313-5316
[2]   CLUSTERING AND RELAXATION IN HAMILTONIAN LONG-RANGE DYNAMICS [J].
ANTONI, M ;
RUFFO, S .
PHYSICAL REVIEW E, 1995, 52 (03) :2361-2374
[3]   Anomalous diffusion as a signature of a collapsing phase in two-dimensional self-gravitating systems [J].
Antoni, M ;
Torcini, A .
PHYSICAL REVIEW E, 1998, 57 (06) :R6233-R6236
[4]  
ANTONI M, CONDMAT9810048
[5]   Crossover from dispersive to regular transport in biased maps [J].
Barkai, E ;
Klafter, J .
PHYSICAL REVIEW LETTERS, 1997, 79 (12) :2245-2248
[6]   Noise-induced transition from anomalous to ordinary diffusion: The crossover time as a function of noise intensity [J].
Floriani, E ;
Mannella, R ;
Grigolini, P .
PHYSICAL REVIEW E, 1995, 52 (06) :5910-5917
[7]  
GEISEL T, 1985, PHYS REV LETT, V54, P616, DOI 10.1103/PhysRevLett.54.616
[8]   DIFFUSION IN HAMILTONIAN DYNAMICAL-SYSTEMS WITH MANY DEGREES OF FREEDOM [J].
KANEKO, K ;
KONISHI, T .
PHYSICAL REVIEW A, 1989, 40 (10) :6130-6133
[9]   LEVY STATISTICS IN A HAMILTONIAN SYSTEM [J].
KLAFTER, J ;
ZUMOFEN, G .
PHYSICAL REVIEW E, 1994, 49 (06) :4873-4877
[10]  
KONISHI T, 1989, PROG THEOR PHYS SUPP, P19, DOI 10.1143/PTPS.98.19