Mycorrhizas and soil structure

被引:1056
作者
Rillig, Matthias C. [1 ]
Mummey, Daniel L. [1 ]
机构
[1] Univ Montana, Microbial Ecol Program, Div Biol Sci, Missoula, MT 59812 USA
关键词
arbuscular mycorrhizas (AM); glomalin-related soil protein; hydrophobins; microaggregate; plant and microbial communities; root system; soil mycelium; soil structure;
D O I
10.1111/j.1469-8137.2006.01750.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In addition to their well-recognized roles in plant nutrition and communities, mycorrhizas can influence the key ecosystem process of soil aggregation. Here we review the contribution of mycorrhizas, mostly focused on arbuscular mycorrhizal fungi (AMF), to soil structure at various hierarchical levels: plant community; individual root; and the soil mycelium. There are a suite of mechanisms by which mycorrhizal fungi can influence soil aggregation at each of these various scales. By extension of these mechanisms to the question of fungal diversity, it is recognized that different species or communities of fungi can promote soil aggregation to different degrees. We argue that soil aggregation should be included in a more complete 'multifunctional' perspective of mycorrhizal ecology, and that in-depth understanding of mycorrhizas/soil process relationships will require analyses emphasizing feedbacks between soil structure and mycorrhizas, rather than a uni-directional approach simply addressing mycorrhizal effects on soils. We finish the discussion by highlighting new tools, developments and foci that will probably be crucial in further understanding mycorrhizal contributions to soil structure.
引用
收藏
页码:41 / 53
页数:13
相关论文
共 124 条
[1]   FORMATION OF EXTERNAL HYPHAE IN SOIL BY 4 SPECIES OF VESICULAR ARBUSCULAR MYCORRHIZAL FUNGI [J].
ABBOTT, LK ;
ROBSON, AD .
NEW PHYTOLOGIST, 1985, 99 (02) :245-255
[2]   Bacterial associations with the mycorrhizosphere and hyphosphere of the arbuscular mycorrhizal fungus Glomus mosseae [J].
Andrade, G ;
Linderman, RG ;
Bethlenfalvay, GJ .
PLANT AND SOIL, 1998, 202 (01) :79-87
[3]   Soil aggregation status and rhizobacteria in the mycorrhizosphere [J].
Andrade, G ;
Mihara, KL ;
Linderman, RG ;
Bethlenfalvay, GJ .
PLANT AND SOIL, 1998, 202 (01) :89-96
[4]   Plant-induced changes in soil structure: Processes and feedbacks [J].
Angers, DA ;
Caron, J .
BIOGEOCHEMISTRY, 1998, 42 (1-2) :55-72
[5]   Fate of carbon and nitrogen in water-stable aggregates during decomposition of (CN)-C-13-N-15-labelled wheat straw in situ [J].
Angers, DA ;
Recous, S ;
Aita, C .
EUROPEAN JOURNAL OF SOIL SCIENCE, 1997, 48 (02) :295-300
[6]   Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth [J].
Artursson, V ;
Finlay, RD ;
Jansson, JK .
ENVIRONMENTAL MICROBIOLOGY, 2006, 8 (01) :1-10
[7]   Combined bromodeoxyuridine immunocapture and terminal-restriction fragment length polymorphism analysis highlights differences in the active soil bacterial metagenome due to Glomus mosseae inoculation or plant species [J].
Artursson, V ;
Finlay, RD ;
Jansson, JK .
ENVIRONMENTAL MICROBIOLOGY, 2005, 7 (12) :1952-1966
[8]   Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscular mycorrhizal hyphae [J].
Artursson, V ;
Jansson, JK .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (10) :6208-6215
[9]   Arbuscular mycorrhizae and soil/plant water relations [J].
Augé, RM .
CANADIAN JOURNAL OF SOIL SCIENCE, 2004, 84 (04) :373-381
[10]   Mycorrhizal promotion of host stomatal conductance in relation to irradiance and temperature [J].
Augé, RM ;
Moore, JL ;
Sylvia, DM ;
Cho, KH .
MYCORRHIZA, 2004, 14 (02) :85-92