We demonstrate that available information on spatial heterogeneity in biotic, topographic, and climatic variables within a forested watershed, Hubbard Brook Experimental Forest (HBEF) Watershed 6, New Hampshire, USA, was sufficient to reproduce the observed elevational pattern in stream NO3 concentration during the 1982-1992 period. Five gridded maps (N mineralization factor, N uptake factor, precipitation, elevation, and soil depth factor) were created from spatial datasets and successively added to the spatially explicit model SINIC-S as spatially varying input parameters. Adding more spatial information generally improved model predictions, with the exception of the soil depth factor. Ninety percent of the variation in the observed stream NO3 concentration was explained by the combination of the spatial variation of the N mineralization and N uptake factors. Simulated streamflow NO3 flux at the outlet point was improved slightly by introducing spatial variability in the model parameters. The model exhibited substantial cell-to-cell variation in soil N dynamics and NO3 loss within the watershed during the simulation period. The simulation results suggest that the spatial distributions of forest floor organic matter and standing biomass are most responsible for creating the elevational pattern in stream NO3 concentration within this watershed.