1 The effects of treatment with rolipram, a specific phosphodiesterase IV inhibitor, on learning and memory function and on the cyclic AMP/PKA/CREB signal transduction system were examined in rats with microsphere embolism (ME)-induced cerebral ischaemia. 2 Sustained cerebral ischaemia was induced by the injection of 900 microspheres (48 pm in diameter) into the right hemisphere of the rat brain. The animals were treated once daily with 3 mg kg(-1) rolipram i.p. from 6 h after the onset of the operation for consecutive 10 days. 3 Microsphere-embolized rats showed prolongation of the escape latency in the water maze task starting from day 7 after the operation and lasting for 3 consecutive days. Treatment with rolipram reduced the escape latency. 4 ME decreased the cyclic AMP content, cytosolic PKA Cbeta level, and nuclear PKA Calpha and Cbeta levels, as well as reduced the pCREB level and the DNA-binding activity of CREB in the cerebral cortex and hippocampus on day 10 after the operation. These alterations were attenuated by treatment with rolipram. 5 These results suggest that ME-induced failure in learning and memory function may be mediated by dysfunction of the cyclic AMP/PKA/CREB signal transduction system, that rolipram may ameliorate ME-induced impairment of learning and memory function, and that the drug effect may be partly attributed to activation of the cyclic AMP/PKA/CREB signal transduction system. British Journal of Pharmacology.