Microphase separation-promoted crystallization in all-conjugated poly(3-alkylthiophene) diblock copolymers with high crystallinity and carrier mobility

被引:31
作者
Ge, Jing [1 ]
He, Ming [1 ]
Yang, Xiubao [1 ]
Ye, Zhi [1 ]
Liu, Xiaofeng [2 ]
Qiu, Feng [1 ]
机构
[1] Fudan Univ, State Key Lab Mol Engn Polymers, Dept Macromol Sci, Shanghai 200433, Peoples R China
[2] Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
HETEROJUNCTION SOLAR-CELLS; FIELD-EFFECT MOBILITY; REGIOREGULAR POLY(3-HEXYL THIOPHENE); COIL BLOCK-COPOLYMERS; THIN-FILM TRANSISTORS; MOLECULAR-WEIGHT; ROD-COIL; CHARGE-TRANSPORT; PERFORMANCE; POLYMERS;
D O I
10.1039/c2jm33204c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The crystallinity of all-conjugated diblock copolymer, poly(3-butylthiophene)-b-poly(3-dodecylthiophene) (P3BDDT), with varied block ratios was significantly enhanced by a "two-step" thermal annealing treatment. The resulting P3BDDT exhibited an attractively high crystallinity of similar to 35%, which is a 3-fold enhancement over those of its homopolymer counterparts. The space-charge limited current (SCLC) mobility measurement revealed that the carrier mobility of the highly crystalline P3BDDT film was increased to as high as similar to 8.4 x 10(-3) cm(2) V-1 s(-1), exceeding the highest SCLC mobility of poly(3-alkylthiophene) homopolymer films reported in previous work (i.e., similar to 1.6 x 10(-3) cm(2) V-1 s(-1)). DSC, XRD, AFM and SAXS characterizations demonstrated that the interplay of crystallization and microphase separation during the "two-step" thermal annealing treatment plays a key role in the improvement of P3BDDT crystallinity.
引用
收藏
页码:19213 / 19221
页数:9
相关论文
共 56 条
[1]   Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility [J].
Bao, Z ;
Dodabalapur, A ;
Lovinger, AJ .
APPLIED PHYSICS LETTERS, 1996, 69 (26) :4108-4110
[2]   High-performance plastic transistors fabricated by printing techniques [J].
Bao, ZN ;
Feng, Y ;
Dodabalapur, A ;
Raju, VR ;
Lovinger, AJ .
CHEMISTRY OF MATERIALS, 1997, 9 (06) :1299-&
[3]   Device physics of polymer:fullerene bulk heterojunction solar cells [J].
Blom, Paul W. M. ;
Mihailetchi, Valentin D. ;
Koster, L. Jan Anton ;
Markov, Denis E. .
ADVANCED MATERIALS, 2007, 19 (12) :1551-1566
[4]   Effect of molecular weight on the structure and morphology of oriented thin films of regioregular poly(3-hexylthiophene) grown by directional epitaxial solidification [J].
Brinkmann, Martin ;
Rannou, Patrice .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (01) :101-108
[5]   Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents [J].
Chang, JF ;
Sun, BQ ;
Breiby, DW ;
Nielsen, MM ;
Sölling, TI ;
Giles, M ;
McCulloch, I ;
Sirringhaus, H .
CHEMISTRY OF MATERIALS, 2004, 16 (23) :4772-4776
[6]   Thermal annealing-induced enhancement of the field-effect mobility of regioregular poly(3-hexylthiophene) films [J].
Cho, Shinuk ;
Lee, Kwanghee ;
Yuen, Jonathan ;
Wang, Guangming ;
Moses, Daniel ;
Heeger, Alan J. ;
Surin, Mathieu ;
Lazzaroni, Roberto .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (11)
[7]   Hole mobility of N,N′-bis(naphthalen-1-yl)-N,N′-bis(phenyl) benzidine investigated by using space-charge-limited currents [J].
Chu, Ta-Ya ;
Song, Ok-Keun .
APPLIED PHYSICS LETTERS, 2007, 90 (20)
[8]   Conjugated polymer photovoltaic cells [J].
Coakley, KM ;
McGehee, MD .
CHEMISTRY OF MATERIALS, 2004, 16 (23) :4533-4542
[9]   Synthesis, Cocrystallization, and Microphase Separation of All-Conjugated Diblock Copoly(3-alkylthiophene)s [J].
Ge, Jing ;
He, Ming ;
Qiu, Feng ;
Yang, Yuliang .
MACROMOLECULES, 2010, 43 (15) :6422-6428
[10]   Synthesis of Light-Emitting Conjugated Polymers for Applications in Electroluminescent Devices [J].
Grimsdale, Andrew C. ;
Chan, Khai Leok ;
Martin, Rainer E. ;
Jokisz, Pawel G. ;
Holmes, Andrew B. .
CHEMICAL REVIEWS, 2009, 109 (03) :897-1091