Beta-cell differentiation from nonendocrine epithelial cells of the adult human pancreas

被引:168
作者
Hao, E
Tyrberg, B
Itkin-Ansari, P
Lakey, JRT
Geron, I
Monosov, EZ
Barcova, M
Mercola, M
Levine, F
机构
[1] Univ Calif San Diego, Rebecca & John Moores UCSD Canc Ctr, La Jolla, CA 92093 USA
[2] Burnham Inst, Stem Cells & Regenerat Program, La Jolla, CA 92037 USA
[3] Univ Alberta, Clin Islet Isolat Lab, Edmonton, AB T6G 2N8, Canada
关键词
D O I
10.1038/nm1367
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The nature and even existence of adult pancreatic endocrine stem or progenitor cells is a subject of controversy in the field of beta-cell replacement for diabetes. One place to search for such cells is in the nonendocrine fraction of cells that remain after islet isolation, which consist of a mixture of epithelia and mesenchyme. Culture in G418 resulted in elimination of the mesenchymal cells, leaving a highly purified population of nonendocrine pancreatic epithelial cells (NEPECs). To evaluate their differentiation potential, NEPECs were heritably marked and transplanted under the kidney capsule of immunodeficient mice. When cotransplanted with fetal pancreatic cells, NEPECs were capable of endocrine differentiation. We found no evidence of beta-cell replication or cell fusion that could have explained the appearance of insulin positive cells from a source other than NEPECs. Nonendocrine-to-endocrine differentiation of NEPECs supports the existence of endocrine stem or progenitor cells within the epithelial compartment of the adult human pancreas.
引用
收藏
页码:310 / 316
页数:7
相关论文
共 46 条
[1]   Insulinotropic hormone glucagon-like peptide-1 differentiation of human pancreatic islet-derived progenitor cells into insulin-producing cells [J].
Abraham, EJ ;
Leech, CA ;
Lin, JC ;
Zulewski, H ;
Habener, JF .
ENDOCRINOLOGY, 2002, 143 (08) :3152-3161
[2]   Regulation of proliferation and differentiation of human fetal pancreatic islet cells by extracellular matrix, hepatocyte growth factor, and cell-cell contact [J].
Beattie, GM ;
Rubin, JS ;
Mally, MI ;
Otonkoski, T ;
Hayek, A .
DIABETES, 1996, 45 (09) :1223-1228
[3]   ACID BETA-GALACTOSIDASE - A DEVELOPMENTALLY-REGULATED MARKER OF ENDOCRINE CELL PRECURSORS IN THE HUMAN FETAL PANCREAS [J].
BEATTIE, GM ;
LEVINE, F ;
MALLY, MI ;
OTONKOSKI, T ;
OBRIEN, JS ;
SALOMON, DR ;
HAYEK, A .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 1994, 78 (05) :1232-1240
[4]   MORPHOLOGY AND FUNCTION OF CULTURED HUMAN FETAL PANCREATIC-CELLS TRANSPLANTED INTO ATHYMIC MICE - A LONGITUDINAL-STUDY [J].
BEATTIE, GM ;
BUTLER, C ;
HAYEK, A .
CELL TRANSPLANTATION, 1994, 3 (05) :421-425
[5]   Formation of insulin-positive cells in implants of human pancreatic duct cell preparations from young donors [J].
Bogdani, M ;
Lefebvre, V ;
Buelens, N ;
Bock, T ;
Pipeleers-Marichal, M ;
In't Veld, P ;
Pipeleers, D .
DIABETOLOGIA, 2003, 46 (06) :830-838
[6]   In vitro cultivation of human islets from expanded ductal tissue [J].
Bonner-Weir, S ;
Taneja, M ;
Weir, GC ;
Tatarkiewicz, K ;
Song, KH ;
Sharma, A ;
O'Neil, JJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (14) :7999-8004
[7]   A 2ND PATHWAY FOR REGENERATION OF ADULT EXOCRINE AND ENDOCRINE PANCREAS - A POSSIBLE RECAPITULATION OF EMBRYONIC-DEVELOPMENT [J].
BONNERWEIR, S ;
BAXTER, LA ;
SCHUPPIN, GT ;
SMITH, FE .
DIABETES, 1993, 42 (12) :1715-1720
[8]   Proliferation and differentiation in the human fetal endocrine pancreas [J].
Bouwens, L ;
Lu, WG ;
DeKrijger, R .
DIABETOLOGIA, 1997, 40 (04) :398-404
[9]   REARRANGEMENTS OF DESMOSOMAL AND CYTOSKELETAL PROTEINS DURING THE TRANSITION FROM EPITHELIAL TO FIBROBLASTOID ORGANIZATION IN CULTURED RAT BLADDER-CARCINOMA CELLS [J].
BOYER, B ;
TUCKER, GC ;
VALLES, AM ;
FRANKE, WW ;
THIERY, JP .
JOURNAL OF CELL BIOLOGY, 1989, 109 (04) :1495-1509
[10]   β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes [J].
Butler, AE ;
Janson, J ;
Bonner-Weir, S ;
Ritzel, R ;
Rizza, RA ;
Butler, PC .
DIABETES, 2003, 52 (01) :102-110