Flexibility of the murine prion protein and its Asp178Asn mutant investigated by molecular dynamics simulations

被引:51
作者
Gsponer, J [1 ]
Ferrara, P [1 ]
Caflisch, A [1 ]
机构
[1] Univ Zurich, Dept Biochem, CH-8057 Zurich, Switzerland
关键词
MD simulations; prion; multiple simulations; D178N mutant; structural rearrangement;
D O I
10.1016/S1093-3263(01)00117-6
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Inherited forms of transmissible spongiform encephalopathy, e.g. familial Creutzfeldt-Jakob disease, Gerstmann-Straussler-Scheinker syndrome and fatal familial insomnia, segregate with specific point mutations of the prion protein. It has been proposed that the pathologically relevant Asp178Asn (D178N) mutation might destabilize the structure of the prion protein because of the loss of the Arg164-Asp178 salt bridge. Molecular dynamics simulations of the structured C-terminal domain of the murine prion protein and the D178N mutant were performed to investigate this hypothesis. The D178N mutant did not deviate from the NMR conformation more than the wild type on the nanosecond time scale of the simulations. In agreement with CD spectroscopy experiments, no major structural rearrangement could be observed for the D178N mutant, apart from the N-terminal elongation of helix 2. The region of structure around the disulfide bridge deviated the least from the NMR conformation and showed the smallest fluctuations in all simulations in agreement with hydrogen exchange data of the wild type prion protein. Large deviations and flexibility were observed in the segments which are ill-defined in the NMR conformation. Moreover, helix I showed an increased degree of mobility, especially at its N-terminal region. The dynamic behavior of the D178N mutant and its minor deviation from the folded conformation suggest that the salt bridge between Arg164 and Asp178 might not be crucial for the stability of the prion protein. (C) 2001 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:169 / 182
页数:14
相关论文
共 74 条
[1]   Mapping the early steps in the pH-induced conformational conversion of the prion protein [J].
Alonso, DOV ;
DeArmond, SJ ;
Cohen, FE ;
Daggett, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (06) :2985-2989
[2]   DOES AGENT OF SCRAPIE REPLICATE WITHOUT NUCLEIC ACID [J].
ALPER, T ;
CRAMP, WA ;
HAIG, DA ;
CLARKE, MC .
NATURE, 1967, 214 (5090) :764-&
[3]   Long-range electrostatic effects on peptide folding [J].
Åqvist, J .
FEBS LETTERS, 1999, 457 (03) :414-418
[4]   Correlation between native-state hydrogen exchange and cooperative residue fluctuations from a simple model [J].
Bahar, I ;
Wallqvist, A ;
Covell, DG ;
Jernigan, RL .
BIOCHEMISTRY, 1998, 37 (04) :1067-1075
[5]   FINITE REPRESENTATION OF AN INFINITE BULK SYSTEM - SOLVENT BOUNDARY POTENTIAL FOR COMPUTER-SIMULATIONS [J].
BEGLOV, D ;
ROUX, B .
JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (12) :9050-9063
[6]  
Billeter M, 2000, ARCH VIROL, P251
[7]   Prion protein NMR structure and species barrier for prion diseases [J].
Billeter, M ;
Riek, R ;
Wider, G ;
Hornemann, S ;
Glockshuber, R ;
Wuthrich, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (14) :7281-7285
[8]   Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis [J].
Booth, DR ;
Sunde, M ;
Bellotti, V ;
Robinson, CV ;
Hutchinson, WL ;
Fraser, PE ;
Hawkins, PN ;
Dobson, CM ;
Radford, SE ;
Blake, CCF ;
Pepys, MB .
NATURE, 1997, 385 (6619) :787-793
[9]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[10]   SOLVENT EFFECTS ON PROTEIN MOTION AND PROTEIN EFFECTS ON SOLVENT MOTION - DYNAMICS OF THE ACTIVE-SITE REGION OF LYSOZYME [J].
BROOKS, CL ;
KARPLUS, M .
JOURNAL OF MOLECULAR BIOLOGY, 1989, 208 (01) :159-181