Kinetic control of the dissociation pathway of calmodulin-peptide complexes

被引:70
作者
Brown, SE [1 ]
Martin, SR [1 ]
Bayley, PM [1 ]
机构
[1] NATL INST MED RES, DIV PHYS BIOCHEM, LONDON NW7 1AA, ENGLAND
关键词
D O I
10.1074/jbc.272.6.3389
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mechanism of dissociation reactions induced by calcium chelators has been studied for complexes of Drosophila calmodulin with target peptides, including four derived from the skeletal muscle myosin light chain kinase target sequence. Reactions were monitored by fluorescence stopped-flow techniques using a variety of intrinsic probes and the indicator Quin2. For most of the complexes, apparently biphasic kinetics were observed in several fluorescence parameters. The absence of any obvious relationship between dissociation rates and peptide affinities implies kinetic control of the dissociation pathway. A general mechanism for calcium and peptide dissociation was formulated and used in numerical simulation of the experimental data. Unexpectedly, the rate of the slowest step decreases with increasing [peptide]/[calmodulin] ratio. Numerical simulation shows this step could contain a substantial contribution from a reversible relaxation process (involving the species Ca-2-calmodulin-peptide), convolved with the following step (loss of C-terminal calcium ions). The results indicate the potentially key kinetic role of the partially calcium-saturated intermediate species. They show that subtle changes in the peptide sequence can have significant effects on both the dissociation rates and also the dissociation pathway. Both effects could contribute to the variety of regulatory behavior shown by calmodulin with different target enzymes.
引用
收藏
页码:3389 / 3397
页数:9
相关论文
共 47 条
[1]   STRUCTURE OF CALMODULIN REFINED AT 2.2 A RESOLUTION [J].
BABU, YS ;
BUGG, CE ;
COOK, WJ .
JOURNAL OF MOLECULAR BIOLOGY, 1988, 204 (01) :191-204
[2]   3-DIMENSIONAL STRUCTURE OF CALMODULIN [J].
BABU, YS ;
SACK, JS ;
GREENHOUGH, TJ ;
BUGG, CE ;
MEANS, AR ;
COOK, WJ .
NATURE, 1985, 315 (6014) :37-40
[3]   BACKBONE DYNAMICS OF CALMODULIN STUDIED BY N-15 RELAXATION USING INVERSE DETECTED 2-DIMENSIONAL NMR-SPECTROSCOPY - THE CENTRAL HELIX IS FLEXIBLE [J].
BARBATO, G ;
IKURA, M ;
KAY, LE ;
PASTOR, RW ;
BAX, A .
BIOCHEMISTRY, 1992, 31 (23) :5269-5278
[4]   THE KINETICS OF CALCIUM-BINDING TO CALMODULIN - QUIN-2 AND ANS STOPPED-FLOW FLUORESCENCE STUDIES [J].
BAYLEY, P ;
AHLSTROM, P ;
MARTIN, SR ;
FORSEN, S .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1984, 120 (01) :185-191
[5]  
Bayley P. M., 1996, Biophysical Journal, V70, pA57
[6]   Target recognition by calmodulin: Dissecting the kinetics and affinity of interaction using short peptide sequences [J].
Bayley, PM ;
Findlay, WA ;
Martin, SR .
PROTEIN SCIENCE, 1996, 5 (07) :1215-1228
[7]  
BOWMAN BF, 1992, J BIOL CHEM, V267, P5346
[8]  
Brown S. E., 1995, Biophysical Journal, V68, pA403
[9]   FLUORESCENCE ANALYSIS OF CALMODULIN MUTANTS CONTAINING TRYPTOPHAN - CONFORMATIONAL-CHANGES INDUCED BY CALMODULIN-BINDING PEPTIDES FROM MYOSIN LIGHT CHAIN KINASE AND PROTEIN KINASE-II [J].
CHABBERT, M ;
LUKAS, TJ ;
WATTERSON, DM ;
AXELSEN, PH ;
PRENDERGAST, FG .
BIOCHEMISTRY, 1991, 30 (30) :7615-7630
[10]   CALMODULIN STRUCTURE REFINED AT 1.7 ANGSTROM RESOLUTION [J].
CHATTOPADHYAYA, R ;
MEADOR, WE ;
MEANS, AR ;
QUIOCHO, FA .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 228 (04) :1177-1192