A molecular approach to bioseparations: Protein-protein and protein-salt interactions

被引:124
作者
Curtis, RA [1 ]
Lue, L [1 ]
机构
[1] Univ Manchester, Sch Chem Engn & Analyt Sci, Manchester M60 1QD, Lancs, England
关键词
proteins; phase equilibria; crystallisation; colloidal phenomena; intermolecular interactions; molecular thermodynamics;
D O I
10.1016/j.ces.2005.04.007
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Many bioprocess separations involve manipulating the solution conditions to selectively remove or concentrate a target protein. The selectivity is determined by the thermodynamics of the protein solution, which are governed, at the molecular level, by protein-protein interactions. Thus, to optimise these processes, one must understand the precise nature of these interactions, how they are affected by the control parameters (e.g., temperature, ionic strength, pH), and how they relate to the solution properties of interest (e.g., protein solubility, protein stability, crystal nucleation rates). Recently, studies of protein-protein interactions have been motivated by the discovery of a crystallisation window, which places bounds on the protein-protein attraction that is required for crystallisation to be possible. This review focuses on experimental and theoretical studies of protein-protein interactions and discusses the current caps in understanding these forces. The first models for these interactions had been based on DLVO theory, which has proven useful for understanding protein-protein interactions in dilute electrolyte solutions. However, DLVO theory does not include such important effects as anisotropic interactions, solvation forces, and specific ion effects. Various approaches have been developed to include these phenomena although they are still not well understood. One outstanding issue concerns specific ion effects, which play a crucial role in biological systems. An initial step in understanding these effects might be to first rationalize protein-salt interactions. (c) 2005 Elsevier Ltd. All fights reserved.
引用
收藏
页码:907 / 923
页数:17
相关论文
共 132 条
[1]  
[Anonymous], 1992, INTERMOLECULAR SURFA
[2]   PROTEIN STABILIZATION AND DESTABILIZATION BY GUANIDINIUM SALTS [J].
ARAKAWA, T ;
TIMASHEFF, SN .
BIOCHEMISTRY, 1984, 23 (25) :5924-5929
[3]   MECHANISM OF PROTEIN SALTING IN AND SALTING OUT BY DIVALENT-CATION SALTS - BALANCE BETWEEN HYDRATION AND SALT BINDING [J].
ARAKAWA, T ;
TIMASHEFF, SN .
BIOCHEMISTRY, 1984, 23 (25) :5912-5923
[4]   PREFERENTIAL INTERACTIONS OF PROTEINS WITH SALTS IN CONCENTRATED-SOLUTIONS [J].
ARAKAWA, T ;
TIMASHEFF, SN .
BIOCHEMISTRY, 1982, 21 (25) :6545-6552
[5]   PREFERENTIAL INTERACTIONS DETERMINE PROTEIN SOLUBILITY IN 3-COMPONENT SOLUTIONS - THE MGCL2 SYSTEM [J].
ARAKAWA, T ;
BHAT, R ;
TIMASHEFF, SN .
BIOCHEMISTRY, 1990, 29 (07) :1914-1923
[6]   ON INTERACTION BETWEEN 2 BODIES IMMERSED IN A SOLUTION OF MACROMOLECULES [J].
ASAKURA, S ;
OOSAWA, F .
JOURNAL OF CHEMICAL PHYSICS, 1954, 22 (07) :1255-1256
[7]   Interfacial aggregation of bovine serum albumin related to crystallization conditions studied by total internal reflection fluorescence [J].
Asanov, AN ;
DeLucas, LJ ;
Oldham, PB ;
Wilson, WW .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1997, 196 (01) :62-73
[8]   Phase diagram of colloidal solutions [J].
Asherie, N ;
Lomakin, A ;
Benedek, GB .
PHYSICAL REVIEW LETTERS, 1996, 77 (23) :4832-4835
[9]   Calculation of short-range interactions between proteins [J].
Asthagiri, D ;
Neal, BL ;
Lenhoff, AM .
BIOPHYSICAL CHEMISTRY, 1999, 78 (03) :219-231
[10]  
AUNE KC, 1971, BIOCHEMISTRY-US, V10, P1617