Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation

被引:938
作者
Gitelson, AA [1 ]
机构
[1] Univ Nebraska, Sch Nat Resources, CALMIT, Lincoln, NE 68588 USA
关键词
leaf area index; reflectance; remote estimation; vegetation fraction; vegetation index;
D O I
10.1078/0176-1617-01176
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The Normalized Difference Vegetation Index (NDVI) is widely used for monitoring, analyzing, and mapping temporal and spatial distributions of physiological and biophysical characteristics of vegetation. It is well documented that the NDVI approaches saturation asymptotically under conditions of moderate-to-high aboveground biomass. While reflectance in the red region (rho(red)) exhibits a nearly flat response once the leaf area index (LAI) exceeds 2, the near infrared (NIR) reflectance (rho(NIR)) continue to respond significantly to changes in moderate-to-high vegetation density (LAI from 2 to 6) in crops. However, this higher sensitivity of the rho(NIR) has little effect on NDVI values once the rho(NIR) exceeds 30%. In this paper a simple modification of the NDVI was proposed. The Wide Dynamic Range Vegetation Index, WDRVI = (a*rho(NIR)-rho(red))/(a*rho(NIR)+rho(red)), where the weighting coefficient a has a value of 0.1-0.2, increases correlation with vegetation fraction by linearizing the relationship for typical wheat, soybean, and maize canopies. The sensitivity of the WDRVI to moderate-to-high LAI (between 2 and 6) was at least three times greater than that of the NDVI. By enhancing the dynamic range while using the same bands as the NDVI, the WDRVI enables a more robust characterization of crop physiological and phenological characteristics. Although this index needs further evaluation, the linear relationship with vegetation fraction and much higher sensitivity to change in LAI will be especially valuable for precision agriculture and monitoring vegetation status under conditions of mode rate-to-high density. It is anticipated that the new index will complement the NDVI and other vegetation indices that are based on the red and NIR spectral bands.
引用
收藏
页码:165 / 173
页数:9
相关论文
共 33 条
[1]  
[Anonymous], 1989, THEORY APPL OPT REMO
[2]   ESTIMATING ABSORBED PHOTOSYNTHETIC RADIATION AND LEAF-AREA INDEX FROM SPECTRAL REFLECTANCE IN WHEAT [J].
ASRAR, G ;
FUCHS, M ;
KANEMASU, ET ;
HATFIELD, JL .
AGRONOMY JOURNAL, 1984, 76 (02) :300-306
[3]   POTENTIALS AND LIMITS OF VEGETATION INDEXES FOR LAI AND APAR ASSESSMENT [J].
BARET, F ;
GUYOT, G .
REMOTE SENSING OF ENVIRONMENT, 1991, 35 (2-3) :161-173
[4]  
BARET F., 1989, 12 CAN S REM SENS IG, P1
[5]   INVIVO SPECTROSCOPY AND INTERNAL OPTICS OF LEAVES AS BASIS FOR REMOTE-SENSING OF VEGETATION [J].
BUSCHMANN, C ;
NAGEL, E .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1993, 14 (04) :711-722
[6]   Retrieving leaf area index of boreal conifer forests using landsat TM images [J].
Chen, JM ;
Cihlar, J .
REMOTE SENSING OF ENVIRONMENT, 1996, 55 (02) :153-162
[7]   Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance [J].
Daughtry, CST ;
Walthall, CL ;
Kim, MS ;
de Colstoun, EB ;
McMurtrey, JE .
REMOTE SENSING OF ENVIRONMENT, 2000, 74 (02) :229-239
[8]  
EIDENSHINK JC, 1992, PHOTOGRAMM ENG REM S, V58, P809
[9]   Use of a green channel in remote sensing of global vegetation from EOS-MODIS [J].
Gitelson, AA ;
Kaufman, YJ ;
Merzlyak, MN .
REMOTE SENSING OF ENVIRONMENT, 1996, 58 (03) :289-298
[10]   MODIS NDVI optimization to fit the AVHRR data series spectral considerations [J].
Gitelson, AA ;
Kaufman, YJ .
REMOTE SENSING OF ENVIRONMENT, 1998, 66 (03) :343-350