Purification and characterization of allene oxide cyclase from dry corn seeds

被引:70
作者
Ziegler, J [1 ]
Hamberg, M [1 ]
Miersch, O [1 ]
Parthier, B [1 ]
机构
[1] KAROLINSKA INST,DEPT MED BIOCHEM & BIOPHYS,DIV PHYSIOL CHEM 2,S-17177 STOCKHOLM,SWEDEN
关键词
D O I
10.1104/pp.114.2.565
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Allene oxide cyclase (AOC; EC 5.3.99.6) catalyzes the cyclization of 12,13(S)-epoxy-9(Z),11,15(Z)-octadecatrienoic acid to 12-oxo-10,15(Z)-phytodienoic acid, the precursor of jasmonic acid (JA). This soluble enzyme was purified 2000-fold from dry corn (Zea mays L.) kernels to apparent homogeneity. The dimeric protein has a molecular mass of 47 kD. Allene oxide cyclase activity was not affected by divalent ions and was not feedback-regulated by its product, 12-oxo-10,15(Z)-phytodienoic acid, or by JA. (+/-)-cis-12,13-Epoxy-9(Z)-octadecenoic acid, a substrate analog, strongly inhibited the enzyme, with 50% inhibition at 20 mu M. Modification of the inhibitor, such as methylation of the carboxyl group or a shift in the position of the epoxy group, abolished the inhibitory effect, indicating that both structural elements and their position are essential for binding to AOC. Nonsteroidal anti-inflammatory drugs, which are often used to interfere with JA biosynthesis, did not influence AOC activity. The purified enzyme catalyzed the cyclization of 12,13(S)-epoxy-9(Z),11,15(Z)-octadecatrienoic acid derived from linolenic acid, but not that of 12,13(S)-epoxy-9(Z),11-octadecadienoic acid derived from linoleic acid.
引用
收藏
页码:565 / 573
页数:9
相关论文
共 53 条
[1]   THE OCTADECANOIC PATHWAY - SIGNAL MOLECULES FOR THE REGULATION OF SECONDARY PATHWAYS [J].
BLECHERT, S ;
BRODSCHELM, W ;
HOLDER, S ;
KAMMERER, L ;
KUTCHAN, TM ;
MUELLER, MJ ;
XIA, ZQ ;
ZENK, MH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (10) :4099-4105
[2]  
BLEE E, 1990, J BIOL CHEM, V265, P12887
[3]   Envelope membranes from spinach chloroplasts are a site of metabolism of fatty acid hydroperoxides [J].
Blee, E ;
Joyard, J .
PLANT PHYSIOLOGY, 1996, 110 (02) :445-454
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]   Intracellular levels of free linolenic and linoleic acids increase in tomato leaves in response to wounding [J].
Conconi, A ;
Miquel, M ;
Browse, JA ;
Ryan, CA .
PLANT PHYSIOLOGY, 1996, 111 (03) :797-803
[6]   JASMONIC ACID DISTRIBUTION AND ACTION IN PLANTS - REGULATION DURING DEVELOPMENT AND RESPONSE TO BIOTIC AND ABIOTIC STRESS [J].
CREELMAN, RA ;
MULLET, JE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (10) :4114-4119
[7]  
CROMBIE L, 1988, J CHEM SOC CHEM COMM, V8, P558
[8]   OLIGOGALACTURONIDES AND CHITOSAN ACTIVATE PLANT DEFENSIVE GENES THROUGH THE OCTADECANOID PATHWAY [J].
DOARES, SH ;
SYROVETS, T ;
WEILER, EW ;
RYAN, CA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (10) :4095-4098
[9]   SALICYLIC-ACID INHIBITS SYNTHESIS OF PROTEINASE-INHIBITORS IN TOMATO LEAVES INDUCED BY SYSTEMIN AND JASMONIC ACID [J].
DOARES, SH ;
NARVAEZVASQUEZ, J ;
CONCONI, A ;
RYAN, CA .
PLANT PHYSIOLOGY, 1995, 108 (04) :1741-1746
[10]  
FALKENSTEIN E, 1991, PLANTA, V185, P316, DOI 10.1007/BF00201050