Lipid suppression in CSI with spatial priors and highly undersampled peripheral k-space

被引:35
作者
Bilgic, Berkin [1 ]
Gagoski, Borjan [2 ]
Kok, Trina [1 ]
Adalsteinsson, Elfar [1 ,3 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] Childrens Hosp Boston, Dept Radiol, Boston, MA USA
[3] MIT, Harvard MIT Div Hlth Sci & Technol, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
lipid suppression; chemical shift imaging; compressed sensing; OUTER-VOLUME SUPPRESSION; TRUNCATION ARTIFACT; RECONSTRUCTION; REDUCTION; MRSI; MRI;
D O I
10.1002/mrm.24399
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Mapping 1H brain metabolites using chemical shift imaging is hampered by the presence of subcutaneous lipid signals, which contaminate the metabolites by ringing due to limited spatial resolution. Even though chemical shift imaging at spatial resolution high enough to mitigate the lipid artifacts is infeasible due to signal-to-noise constraints on the metabolites, the lipid signals have orders of magnitude of higher concentration, which enables the collection of high-resolution lipid maps with adequate signal-to-noise. The previously proposed dual-density approach exploits this high signal-to-noise property of the lipid layer to suppress truncation artifacts using high-resolution lipid maps. Another recent approach for lipid suppression makes use of the fact that metabolite and lipid spectra are approximately orthogonal, and seeks sparse metabolite spectra when projected onto lipid-basis functions. This work combines and extends the dual-density approach and the lipid-basis penalty, while estimating the high-resolution lipid image from 2-average k-space data to incur minimal increase on the scan time. Further, we exploit the spectral-spatial sparsity of the lipid ring and propose to estimate it from substantially undersampled (acceleration R = 10 in the peripheral k-space) 2-average in vivo data using compressed sensing and still obtain improved lipid suppression relative to using dual-density or lipid-basis penalty alone. Magn Reson Med, 2013. (c) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:1501 / 1511
页数:11
相关论文
共 27 条
[1]  
Adalsteinsson E, 1999, MAGNET RESON MED, V42, P314, DOI 10.1002/(SICI)1522-2594(199908)42:2<314::AID-MRM14>3.0.CO
[2]  
2-X
[3]  
Bertsekas DP, 1999, NONLINEAR PROGRAMMIN, Vxiv
[4]   SPATIAL LOCALIZATION IN NMR-SPECTROSCOPY INVIVO [J].
BOTTOMLEY, PA .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1987, 508 :333-348
[5]   MR IMAGING - CLINICAL USE OF THE INVERSION RECOVERY SEQUENCE [J].
BYDDER, GM ;
YOUNG, IR .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1985, 9 (04) :659-675
[6]   MULTISECTION PROTON MR SPECTROSCOPIC IMAGING OF THE BRAIN [J].
DUYN, JH ;
GILLEN, J ;
SOBERING, G ;
VANZIJL, PCM ;
MOONEN, CTW .
RADIOLOGY, 1993, 188 (01) :277-282
[7]   Comparison of inversion recovery preparation schemes for lipid suppression in 1H MRSI of human brain [J].
Ebel, A ;
Govindaraju, V ;
Maudsley, AA .
MAGNETIC RESONANCE IN MEDICINE, 2003, 49 (05) :903-908
[8]   Correction of local B0 shifts in 3D EPSI of the human brain at 4 T [J].
Ebel, Andreas ;
Maudsley, Andrew A. ;
Schuff, Norbert .
MAGNETIC RESONANCE IMAGING, 2007, 25 (03) :377-380
[9]   Robust Reconstruction of MRSI Data Using a Sparse Spectral Model and High Resolution MRI Priors [J].
Eslami, Ramin ;
Jacob, Mathews .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (06) :1297-1309
[10]   Nonuniform fast Fourier transforms using min-max interpolation [J].
Fessler, JA ;
Sutton, BP .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2003, 51 (02) :560-574