Anaerobic degradation of monoaromatic hydrocarbons

被引:164
作者
Chakraborty, R [1 ]
Coates, JD [1 ]
机构
[1] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA
关键词
D O I
10.1007/s00253-003-1526-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Over the last two decades significant advances have been made in our understanding of the anaerobic biodegradability of monoaromatic hydrocarbons. It is now known that compounds such as benzene, toluene, ethylbenzene, and all three xylene isomers can be biodegraded in the absence of oxygen by a broad diversity of organisms. These compounds have been shown to serve as carbon and energy sources for bacteria growing phototrophically, or respiratorily with nitrate, manganese, ferric iron, sulfate, or carbon dioxide as the sole electron acceptor. In addition, it has also been recently shown that complete degradation of monoaromatic hydrocarbons can also be coupled to the respiration of oxyanions of chlorine such as perchlorate or chlorate, or to the reduction of the quinone moieties of humic substances. Many pure cultures of hydrocarbon-degrading anaerobes now exist and some novel biochemical and genetic pathways have been identified. In general, a fumarate addition reaction is used as the initial activation step of the catabolic process of the corresponding monoaromatic hydrocarbon compounds. However, other reactions may alternatively be involved depending on the electron acceptor utilized or the compound being degraded. In the case of toluene, fumarate addition to the methyl group mediated by benzylsuccinate synthase appears to be the universal mechanism of activation and is now known to be utilized by anoxygenic phototrophs, nitrate-reducing, Fe(III)-reducing, sulfate-reducing, and methanogenic cultures. Many of these biochemical pathways produce unique extracellular intermediates that can be utilized as biomarkers for the monitoring of hydrocarbon degradation in anaerobic natural environments.
引用
收藏
页码:437 / 446
页数:10
相关论文
共 115 条
[1]  
Achenbach LA, 2000, ASM NEWS, V66, P714
[2]   Dechloromonas agitata gen. nov., sp nov and Dechlorosoma suillum gen. nov., sp nov., two novel environmentally dominant (per)chlorate-reducing bacteria and their phylogenetic position [J].
Achenbach, LA ;
Michaelidou, U ;
Bruce, RA ;
Fryman, J ;
Coates, JD .
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2001, 51 :527-533
[3]   Carbon isotope fractionation during anaerobic biodegradation of toluene: Implications for intrinsic bioremediation [J].
Ahad, JME ;
Lollar, BS ;
Edwards, EA ;
Slater, GF ;
Sleep, BE .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2000, 34 (05) :892-896
[4]   TAXONOMIC POSITION OF AROMATIC-DEGRADING DENITRIFYING PSEUDOMONAD STRAINS K-172 AND KB-740 AND THEIR DESCRIPTION AS NEW MEMBERS OF THE GENERA THAUERA, AS THAUERA-AROMATICA SP-NOV, AND AZOARCUS, AS AZOARCUS-EVANSII SP-NOV, RESPECTIVELY, MEMBERS OF THE BETA-SUBCLASS OF THE PROTEOBACTERIA [J].
ANDERS, HJ ;
KAETZKE, A ;
KAMPFER, P ;
LUDWIG, W ;
FUCHS, G .
INTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY, 1995, 45 (02) :327-333
[5]  
Anderson R.T., 1999, Bioremediation J, V3, P121, DOI DOI 10.1080/10889869991219271
[6]   Anaerobic benzene oxidation in the Fe(III) reduction zone of petroleum contaminated aquifers [J].
Anderson, RT ;
Rooney-Varga, JN ;
Gaw, CV ;
Lovley, DR .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1998, 32 (09) :1222-1229
[7]  
Anderson RT, 1997, ADV MICROB ECOL, V15, P289
[8]   STIMULATED PETROLEUM BIODEGRADATION [J].
ATLAS, RM .
CRC CRITICAL REVIEWS IN MICROBIOLOGY, 1977, 5 (04) :371-386
[10]   Petroleum biodegradation and oil spill bioremediation [J].
Atlas, RM .
MARINE POLLUTION BULLETIN, 1995, 31 (4-12) :178-182