Biogenesis and topology of the transient receptor potential Ca2+ channel TRPC1

被引:23
作者
Dohke, Y
Oh, YS
Ambudkar, IS
Turner, RJ
机构
[1] Natl Inst Dent & Craniofacial Res, Membrane Biol Sect, NIH, DHHS, Bethesda, MD 20892 USA
[2] Natl Inst Dent & Craniofacial Res, Secretory Physiol Sec, Gene Therepy & Therapeut Branch, NIH,DHHS, Bethesda, MD 20892 USA
关键词
D O I
10.1074/jbc.M312456200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The TRPC ion channels are candidates for the store-operated Ca2+ entry pathway activated in response to depletion of intracellular Ca2+ stores. Hydropathy analyses indicate that these proteins contain eight hydrophobic regions (HRs) that could potentially form alpha-helical membrane-spanning segments. Based on limited sequence similarities to other ion channels, it has been proposed that only six of the eight HRs actually span the membrane and that the last two membrane-spanning segments (HRs 6 and 8) border the ion-conducting pore of which HR 7 forms a part. Here we study the biogenesis and transmembrane topology of human TRPC1 to test this model. We have employed a truncation mutant approach combined with insertions of glycosylation sites into full-length TRPC1. In our truncation mutants, portions of the TRPC1 sequence containing one or more HRs were fused between the enhanced green fluorescent protein and a C-terminal glycosylation tag. These chimeras were transiently expressed in the human embryonic cell line HEK-293T. Glycosylation of the tag was used to monitor its location relative to the lumen of the endoplasmic reticulum and thereby HR orientation. Our data indicate that HRs 1, 4, and 6 cross the membrane from cytosol to the ER lumen, that HRs 2, 5, and 8 have the opposite orientation, and that HR 3 is left out of the membrane on the cytosolic side. Our results also show that the sequence downstream of HR 8 plays an important role in anchoring its C-terminal end on the cytosolic side of the membrane. This effect appears to prevent HR 7 from spanning the bilayer and to result in its forming a pore-like structure of the type previously envisioned for the TRPC channels. We speculate that a similar mechanism may be responsible for the formation of other ion channel pores.
引用
收藏
页码:12242 / 12248
页数:7
相关论文
共 44 条
[1]  
BAMBERG K, 1994, J BIOL CHEM, V269, P16909
[2]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkr1065, 10.1093/nar/gkh121]
[3]   THE MEMBRANE TOPOLOGY OF THE RAT SARCOPLASMIC AND ENDOPLASMIC-RETICULUM CALCIUM ATPASES BY IN-VITRO TRANSLATION SCANNING [J].
BAYLE, D ;
WEEKS, D ;
SACHS, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (43) :25678-25684
[4]   Identification of membrane insertion sequences of the rabbit gastric cholecystokinin-A receptor by in vitro translation [J].
Bayle, D ;
Weeks, D ;
Sachs, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (32) :19697-19707
[5]   Transmembrane helix predictions revisited [J].
Chen, CP ;
Kernytsky, A ;
Rost, B .
PROTEIN SCIENCE, 2002, 11 (12) :2774-2791
[6]   The TRP ion channel family [J].
Clapham, DE ;
Runnels, LW ;
Strübing, C .
NATURE REVIEWS NEUROSCIENCE, 2001, 2 (06) :387-396
[7]  
CLAROS MG, 1994, COMPUT APPL BIOSCI, V10, P685
[8]   Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method [J].
Cserzo, M ;
Wallin, E ;
Simon, I ;
vonHeijne, G ;
Elofsson, A .
PROTEIN ENGINEERING, 1997, 10 (06) :673-676
[9]   Evidence that the transmembrane biogenesis of aquaporin 1 is cotranslational in intact mammalian cells [J].
Dohke, Y ;
Turner, RJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (17) :15215-15219
[10]   ISOLATION OF INTRACELLULAR MEMBRANES BY MEANS OF SODIUM-CARBONATE TREATMENT - APPLICATION TO ENDOPLASMIC-RETICULUM [J].
FUJIKI, Y ;
HUBBARD, AL ;
FOWLER, S ;
LAZAROW, PB .
JOURNAL OF CELL BIOLOGY, 1982, 93 (01) :97-102